Math 500: Topology Homework 3

Lawrence Tyler Rush <me@tylerlogic.com>

Problems

P-1

In each of the following subproblems, let X and Y be the orginal topological spaces on which f is defined and \overline{X} or \overline{Y} be the respective spaces which are alterted as per the subproblem description.

(a) Make X finer.

Making the domain finer won't affect the continuity. Let U be an open set of Y. Then $f^{-1}(U)$ is open in X. But since \overline{X} is finer than X, then $\mathcal{T}_X \subset \mathcal{T}_{\overline{X}}$ and therefore $f^{-1}(U)$ is also open in \overline{X} .

(b) Make X courser.

Making the domain courser can, but will not necessarily, result in f not being continuous. As an example of a function "losing its continuity": if X and Y are both the discrete topologies on \mathbb{R} , and f is the identity map, then making X courser by changing it to the indiscrete topology will make $f^{-1}(U)$ non-open if U is any proper, nontrivial subset of Y. On the other hand, f can retain its continuity, as exampled by the following scenario. Let X be the discrete topology on \mathbb{R} and Y be the indiscrete, with f again being the identity map. In this case, no matter how course X is made, f will always be continuous.

(c) Make Y finer.

Again making the topology of Y finer can, but will not necessarily, cause f to lose its continuity. An example when it does is if f is the identity map an X and Y are the same topological spaces, then adding any set to the topology on Y (and any other sets necessary to maintain it topological status) will cause f to no longer be continuous. An example of where f does not lose continuity is if X and Y are the same sets, X has the discrete topology, Y has any other except for the discrete, and f is the identity map. Then in this case X has the "finest" topology for the set X = Y, so no matter what sets are added to the topology on Y to make it finer, no set added will be added that isn't already in the discrete topology.

(d) Make X courser.

Making Y courser will not affect the continuity of f. This is so since $\mathfrak{T}_{\overline{Y}} \subset \mathfrak{T}_{Y}$ and every $U\mathfrak{T}_{Y}$ has that $f^{-1}(U)$ is open in X, so any set of $\mathfrak{T}_{\overline{Y}}$ will have the same.

P-2

Using the objects in the images of Figure 1 we have the following homeomorphism classes.

saucer \equiv glass \equiv spoon \equiv fork \equiv plate \equiv coin \equiv nail \equiv bolt

 $\operatorname{cup} \equiv \operatorname{nut} \equiv \operatorname{wedding ring} \equiv \operatorname{flower pot} \equiv \operatorname{key}$

Figure 1: Images of items to partition into homeomorphic equivalency classes.

Here we can use polar coordinates to convert between the disk and the square. Basically, a point (r, θ) in the square will be the point in the disk of radius r away from the origin, and at an angle θ from the positive x-axis. Given this we define our map $f: D^2 \to I^2$ as follows¹

$$f(x,y) = (\sqrt{x^2 + y^2}, \overline{\arctan}(y, x))$$

begetting an inverse function of

 $f^{-1}(r,\theta) = (r\cos\theta, r\sin\theta)$

Since each of the composite functions which make up f are individually continuous for $x + y \leq 1$ then the individual components of f are each continuous by Munkres Theorem 18.2 (c) which in turn gives us, by Munkres Theorem 18.4, that f itself is continuous. An identical argument holds for f^{-1} . Because f^{-1} is continuous, then f is open. So because f is an invertible, open, continuous map, than it is a homeomorphism, and thus D^2 and I^2 are homeomorphic.

P-4 Munkres §18 exercise 1

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous according to the open set definition. Let $x \in \mathbb{R}$ and $\epsilon > 0$, then $f^{-1}((f(x) - \epsilon, f(x) + \epsilon))$ is open. This means that there exists some interval contained inside it which contains x, i.e. there exists a $\delta > 0$ such that $(x - \delta, x + \delta) \subset f^{-1}((f(x) - \epsilon, f(x) + \epsilon))$. Thus we have that any y in $(x - \delta, x + \delta)$ will also be in $f^{-1}((f(x) - \epsilon, f(x) + \epsilon))$, and hence $f(y) \in (f(x) - \epsilon, f(x) + \epsilon)$. Thus f is continuous according to the $\epsilon - \delta$ definition.

Conversely assume that the $\epsilon - \delta$ definition of continuity holds for f. Let V be open in \mathbb{R} , then for each $x \in f^{-1}(V)$ there is an ϵ such that $(f(x) - \epsilon, f(x) + \epsilon) \subset V$. From the $\epsilon - \delta$ property of f we get that $f((x - \delta, x + \delta)) \subset (f(x) - \epsilon, f(x) + \epsilon) \subset V$, which implies that $(x - \delta, x + \delta) \subset f^{-1}(V)$, i.e. $f^{-1}(V)$ is open. Thus f is continuous according to the set definition.

P-5 Prove Munkres' §18 Theorem 1

To prove the equivalency of this theorem, we will proceed by proving

- (a) (1) \implies (3)
- (b) (3) \implies (2)
- (c) (2) \implies (1)
- (d) (1) \implies (4)
- (e) (4) \implies (1)

and in each case $f: X \to Y$ will be a function with X and Y topological spaces.

(a) $(1) \implies (3)$

Assume that f is a continuous function. Let $B \in Y$ be closed. Then $Y \setminus B$ is open. Therefore $f^{-1}(Y \setminus B)$ is as well, but this is equal to $X \setminus f^{-1}(B)$, and so $f^{-1}(B)$ must be closed.

¹The function we name $\overline{\arctan}$ is just the inverse tangent function which takes the different quandrants into account. We will assume it returns the value of the angle from the positive x-axis in the range $[0, 2\pi)$. The details of the function are out of scope of the proof, but we note that such functions exist as this C function: http://www.cplusplus.com/reference/clibrary/cmath/atan2/

(b) (3) \implies (2)

Let $f: X \to Y$ be a function such that for all closed sets B in Y, $f^{-1}(B)$ is closed. For $A \subset X$, $A \subset f^{-1}(f(A))$ is always true and since sets are subsets of their own closure, then $A \subset f^{-1}(\overline{f(A)})$. Since $\overline{f(A)}$ is a closed set, then by assumption $f^{-1}(\overline{f(A)})$ is closed, but because it contains A, then it contains \overline{A} since the closure of A is the union of closed supersets of A. So we have $\overline{A} \subset f^{-1}(\overline{f(A)})$, implying $f(\overline{A}) \subset \overline{f(A)}$.

(c)
$$(2) \implies (1)$$

Assume that for all $A \subset X$, $f(\overline{A}) = \overline{f(A)}$. Let U be an open set of Y. Let $x \in \overline{X \setminus f^{-1}(U)}$, which implies that $f(x) \in f\left(\overline{X \setminus f^{-1}(U)}\right)$. Since $Y \setminus U$ is closed we have

$$f\left(\overline{X \setminus f^{-1}(U)}\right) \subset \overline{f(X \setminus f^{-1}(U))} = \overline{f(f^{-1}(Y) \setminus f^{-1}(U))} = \overline{f(f^{-1}(Y \setminus U))} \subset \overline{Y \setminus U} = Y \setminus U$$

and from it we get $x \in f^{-1}(Y \setminus U)$, but $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ and so $x \in X \setminus f^{-1}(U)$. Thus $\overline{X \setminus f^{-1}(U)} \subset X \setminus f^{-1}(U)$, and therefore, since a set is a subset of its own closure, $\overline{X \setminus f^{-1}(U)} = X \setminus f^{-1}(U)$, so $X \setminus f^{-1}(U)$ is closed. By this $f^{-1}(U)$ is open, which yields that f is continuous.

(d) $(1) \implies (4)$

Assume that $f: X \to Y$ is a continuous function. Let $V \subset Y$ be a neighborhood of f(x) for some $x \in X$. Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is open. Since $f(f^{-1}(V)) \subset V$ is always true, then $f^{-1}(V)$ is a neighborhood U of x with $f(U) \subset V$.

(e)
$$(4) \implies (1)$$

Assume that for all neighborhoods V of f(x), there exists a neighborhood U of x such that $f(U) \subset V$. Let V be an open set of Y. For each $x \in f^{-1}(V)$ let U_x denote a neighborhood of x such that $f(U_x) \subset V$, i.e. $U_x \subset f^{-1}(V)$. Therefore $\bigcup_{x \in f^{-1}(V)} U_x \subset f^{-1}(V)$, but since each U_x contains x then $f^{-1}(V) \subset \bigcup_{x \in f^{-1}(V)} U_x \subset f^{-1}(V)$. Therefore $f^{-1}(V)$ equals $\bigcup_{x \in f^{-1}(V)} U_x$ which, as a union of open sets, is open. Hence f is continuous.

P-6 Munkres §19 exercise 7

By \mathbb{R}_n denote the set

$$\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times (\mathbb{R} \setminus \{0\})}_{n \text{ terms}} \times \{0\} \times \{0\} \cdots$$

Note that with this notation \mathbb{R}_0 is the product containing only singletons of zero. So then, we can represent \mathbb{R}^{∞} by

$$\mathbb{R}^{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathbb{R}_n$$

So in light of Munkres Theorem 19.5,

$$\overline{\mathbb{R}_n} = \overline{\mathbb{R}} \times \overline{\mathbb{R}} \times \dots \times \left(\overline{\mathbb{R} \setminus \{0\}}\right) \times \overline{\{0\}} \times \overline{\{0\}} \cdots = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n \text{ times}} \times \{0\} \times \{0\} \cdots$$

for both the box and product topologies. This gives us that

$$\overline{\mathbb{R}^{\infty}} = \bigcup_{n \in \mathbb{N}_0} \overline{\mathbb{R}_n}$$

which simply implies that the closure of \mathbb{R}^{∞} is \mathbb{R}^{ω} for both the box and product topologies.

References

- Cup image Figure 1a http://img1.123freevectors.com/wp-content/uploads/objects_big/067_objects_ coffee-cup-free-vector.jpg
- [2] saucer image figure 1b: http://www.bryanchina.com/Mugs/BWE-066%20Cappuccino.Espresso% 20Cappuccino%20Saucer%20White.JPG
- [3] glass image figure 1c: http://party.rainbow-rental.com/dinnerware/dinnerware_images/highball.jpg
- [4] spoon image figure 1d: http://iblogwhatihear.com/wp-content/uploads/2010/01/spoon.jpg
- [5] fork image figure 1e: http://www.ccesonline.com/images/fork260.jpg
- [6] plate image figure 1f: http://9pin.in/images/designer-photo-plate-room-tea.jpg
- [7] coin image figure 1g: http://www.marshu.com/articles/images-website/articles/ presidents-on-coins/quarter-coin-head.jpg
- [8] nail image figure 1h: http://image.tradevv.com/2010/03/26/zjlongtong1_1080859_600/ stainless-steel-nail.jpg
- [9] bolt image figure 1i: http://us.123rf.com/400wm/400/400/moori/moori0803/moori080300178/ 2744907-used-metal-bolt-on-a-white-background.jpg
- [10] nut image figure 1j: http://www.portlandbolt.com/image/products/full/heavy_hex_nut1.jpg
- [11] wedding ring image figure 1k: http://images.pictureshunt.com/pics/w/wedding_ring-2165.jpg
- [12] flower pot image figure 11: http://cchs.usd224.com/Classes09/Flowersforless/FlowerPot.jpg
- [13] key image figure 1m: http://www.feelnumb.com/wp-content/uploads/2009/03/keyHorizontal.jpg