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1 do Carmo pg. 5 exercise 2

Assume for later contradiction that α′(t0) is not orthogonal to α(t0). Since α′(t0) is nonzero, then we are able to
find a ε > 0 such that either |α(t0 − ε)| < |α(t0)| or |α(t0 + ε)| < |α(t0)|. However, either case contradicts the fact
that α(t0) is the point of the trace of α which is closest to the origin. Thus α′(t0)⊥α(t0) must be true.

2 do Carmo pg. 7 exercise 2

Figure 1: Cycloid at a Glance.

(a)

We will parametrize the cycloid by the angle of rotation, denote it by t. From the diagram in Figure 1 it can be
seen that

θ =
1

2
(π − t)

ϕ =
π

2
− θ =

t

2

Thus the value of h is determined by the following sequence of equations.

h

2
= cos θ

h = 2 cos θ

h = 2 cos

(
1

2
(π − t)

)
h = 2 sin

t

2
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With these things, we can finally derive the point p.

px = t− h cosϕ

px = t− 2 sin
t

2
cos

t

2
px = t− sin t

and

py = h sinϕ

py =

(
2 sin

t

2

)
sin

t

2

py = 2 sin2 t

2
py = 1− cos t

(b)

Let’s rotate from 0 to 2π, fixing t0 at 0. By making use of the double angle formula for cos, we have the following.

s(2π) =

∫ 2π

0

|α′(t)| dt

=

∫ 2π

0

|(1− cos t, sin t| dt

=

∫ 2π

0

√
(1− cos t)2 + sin2 t dt

=

∫ 2π

0

√
1− 2 cos t+ cos2 t+ sin2 t dt

=

∫ 2π

0

√
2− 2 cos t dt

=
√

2

∫ 2π

0

√
1− cos t dt

=
√

2

∫ 2π

0

√
1−

(
cos2

t

2
− sin2 t

2

)
dt

=
√

2

∫ 2π

0

√
1− cos2

t

2
+ sin2 t

2
dt

=
√

2

∫ 2π

0

√
2 sin2 t

2
dt

= 2

∫ 2π

0

sin
t

2
dt

= −4 cos
t

2

∣∣∣∣ 2π
0

= −4 cosπ + 4 cos(0)

= 8
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Figure 2: Cissoid of Diocles at a Glance.

(a)

For this problem we will use Figure 2 as a guide. Using some trigonometry, from the figure we get the following
(remember the diameter is length 2a)

ϕ = 2θ

OB =
OA

cos θ
=

2a

cos θ

OC =
a sin 2ϕ

sin θ
=
a sin 2θ

sin θ

These allow us to have the following

p = (OP cos θ,OP sin θ)

= (CB cos θ, CB sin θ)

= (OB −OC) cos θ, (OB −OC) sin θ)

=

((
2a

cos θ
− a sin 2θ

sin θ

)
cos θ,

(
2a

cos θ
− a sin 2θ

sin θ

)
sin θ

)
=

((
2a

cos θ
− 2a cos θ sin θ

sin θ

)
cos θ,

(
2a

cos θ
− 2a cos θ sin θ

sin θ

)
sin θ

)
=

(
2a− 2a cos2 θ,

2a sin θ

cos θ
− 2a cos θ sin θ

)
=

(
2a sin2 θ,

2a sin θ − 2a cos2 θ sin θ

cos θ

)
=

(
2a sin2 θ sec2 θ

sec2 θ
,

2a sin θ(1− cos2 θ)

cos θ

)
=

(
2a sin2 θ

sec2 θ cos2 θ
,

2a tan θ sin2 θ sec2 θ

sec2 θ

)
=

(
2a tan2 θ

1 + tan2 θ
,

2a tan θ sin2 θ

(1 + tan2 θ) cos2 θ

)
=

(
2a tan2 θ

1 + tan2 θ
,

2a tan3 θ

1 + tan2 θ

)
Hence letting t = tan θ we get

p =

(
2at2

1 + t2
,

2at3

1 + t2

)
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(b)

Because

α′(t) =

(
4at

1 + t2
− 4at3

(1 + t2)2
,

6at2

1 + t2
− 4at4

(1 + t2)2

)
=

(
4at

(1 + t2)2
,

2at2(3 + t2)

(1 + t2)2

)
then α(0) = (0, 0), and so α has a singular point at the origin (0, 0).

(c)

lim
t→∞

α(t) = lim
t→∞

(
2at2

1 + t2
,

2at3

1 + t2

)
=

(
2a lim

t→∞

t2

1 + t2
, 2a lim

t→∞

t3

1 + t2

)
= (2a,∞)

lim
t→∞

α′(t) = lim
t→∞

(
4at

(1 + t2)2
,

2at2(3 + t2)

(1 + t2)2

)
=

(
4a lim

t→∞

t

(1 + t2)2
, 2a lim

t→∞

t2(3 + t2)

(1 + t2)2

)
= (0, 2a)
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(a)

Left Equation For α(t) = (x(t), y(t), z(t)) the Fundamental Theorem of Calculus gives us that there is a c ∈ I
such that

(q − p) · v = (q1 − p1)v1 + (q2 − p2)v2 + (q3 − p3)v3 = x′(c)v1 + y′(c)v2 + z′(c)v3 = α′(c) · v

but since v is a vector of magnitude 1, then

α′(c) · v =

∫ b

a

α′(t) · v dt

so

(q − p) · v =

∫ b

a

α′(t) · v dt

Right Inequality By the definition of dot product∫ b

a

α′(t) · v dt =

∫ b

a

|α′(t)||v| cos θ dt =

∫ b

a

|α′(t)| cos θ dt

Now since cos θ ranges between −1 and 1 then∫ b

a

|α′(t)| cos θ dt ≤
∫ b

a

|α′(t)| dt
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(b)

5

(a)

To show that α(t) is parametrized by arc lenght, we must show |α′(t)| = 1 for all t. So proceeding that way, we
have

x′(t) = 1− 1

t+ 1

y′(t) =

√
2t

t+ 1

z′(t) =
1

t+ 1

giving us

α′(t) =

(
1− 1

t+ 1
,

√
2t

t+ 1
,

1

t+ 1

)
=

(
t

t+ 1
,

√
2t

t+ 1
,

1

t+ 1

)
.

Therefore |α′(t)| is√√√√( t

t+ 1

)2

+

( √
2t

t+ 1

)2

+

(
1

t+ 1

)2

=

√
t2

(t+ 1)2
+

2t

(t+ 1)2
+

1

(t+ 1)2
=

√
(t+ 1)2

(t+ 1)2
= 1

Hence α is parametrized by arc length.

(b)

Curvature. The curvature, κ, is |α′′(t)|. Using what we know from the previous part,

α′′(t) =

(
1

t+ 1
− t

(t+ 1)2
,

1√
2t(t+ 1)

−
√

2t

(t+ 1)2
,
−1

(t+ 1)2

)
=

(
1

(t+ 1)2
,

1− t√
2t(t+ 1)2

,
−1

(t+ 1)2

)
then

κ(t) =

√(
1

(t+ 1)2

)2

+

(
1− t√

2t(t+ 1)2

)2

+

(
−1

(t+ 1)2

)2

=

√
2

(t+ 1)4
+

(1− t)2
2t(t+ 1)4

=

√
4t+ (1− t)2

2t(t+ 1)4
=

√
(t+ 1)2

2t(t+ 1)4

=
1√

2t(t+ 1)
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Torsion. The torsion of α, τ , is the magnitude of the derivative of the binormal vector, b, as given by the Frenet
equation b′ = τn. The binomial vector is

b(t) = t(t) ∧ n(t)

b(t) = α′(t) ∧ (κ(t))−1α′′(t)

b(t) =

(
t

t+ 1
,

√
2t

t+ 1
,

1

t+ 1

)
∧
√

2t(t+ 1)

(
1

(t+ 1)2
,

1− t√
2t(t+ 1)2

,
−1

(t+ 1)2

)

b(t) =

(
t

t+ 1
,

√
2t

t+ 1
,

1

t+ 1

)
∧

( √
2t

t+ 1
,

1− t
t+ 1

,
−
√

2t

t+ 1

)

b(t) =
1

(t+ 1)2

[(
t,
√

2t, 1
)
∧
(√

2t, 1− t,−
√

2t
)]

b(t) =
1

(t+ 1)2

(
3t− 1, (t− 1)

√
2t,−t2 − t

)
so

b′(t) =
−2

(t+ 1)3

(
3t− 1, (t− 1)

√
2t,−t2 − t

)
+

1

(t+ 1)2

(
3,

3t− 1√
2t

,−2t− 1

)
b′(t) =

1

(t+ 1)3

(
2− 6t, (2− 2t)

√
2t, 2t2 + 2t

)
+

1

(t+ 1)3

(
3t+ 3,

3t2 − 2t− 1√
2t

,−2t2 − 3t− 1

)
b′(t) =

1

(t+ 1)3

(
−3t− 5,

−(t− 1)2√
2t

, t− 1

)
and thus

τ(t) = |b′(t)|

τ(t) =
1

(t+ 1)3

√
(−3t− 5)2 +

(
−(t− 1)2√

2t

)2

+ (t− 1)2

τ(t) =
1

(t+ 1)3

√
10t2 + 28t+ 26 +

(t− 1)4

2t
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The following are for

α(s) =
(
a cos

s

c
, a sin

s

c
, b
s

c

)
(a) The parameter s is the arc length

α′(s) =

(
−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c

)

|α′(s)| =
√
a2

c2
sin2 s

c
+
a2

c2
cos2

s

c
+
b2

c2
=

√
a2

c2
+
b2

c2
=

√
a2 + b2

c2
=

√
c2

c2
= 1

Therefore s is the arc length.

(b) Curvature and torsion.

α′′(s) =
(
− a

c2
cos

s

c
,− a

c2
sin

s

c
, 0
)
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k(s) = |α′′(s)| =
√( a

c2
cos

s

c

)2
+
( a
c2

sin
s

c

)2
=

a

c2

b(s) = α′(s) ∧ (k(s)−1)α′′(s)

=

(
−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c

)
∧ c

2

a

(
− a

c2
cos

s

c
,− a

c2
sin

s

c
, 0
)

=

(
−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c

)
∧
(
− cos

s

c
,− sin

s

c
, 0
)

=

(
b

c
sin

s

c
,
b

c
cos

s

c
,
a

c
sin2 s

c
+
a

c
cos2

s

c

)
=

(
b

c
sin

s

c
,
b

c
cos

s

c
,
a

c

)

b′(s) =

(
b

c2
cos

s

c
,− b

c2
sin

s

c
, 0

)

τ(s) = |b′(s)| =

√(
b

c2
cos

s

c

)2

+

(
b

c2
sin

s

c

)2

=

√
b2

c4
cos2

s

c
+
b2

c4
sin2 s

c
=

√
b2

c4
=

b

c2

(c)

The osculating plane of α at s = s0 is defined by the following point, normal vector tuple

(α(s0), b(s0)) =

((
a cos

s0
c
, a sin

s0
c
, b
s0
c

)
,

(
b

c
sin

s0
c
,
b

c
cos

s0
c
,
a

c

))
the equations for which are given and determined in the previous problem.

(d)

The angle between the z-axis and a line passing through α(s) and containing n(s) will be the same as the angle
between n(s) and any vector contain by the z-axis, say (0, 0, 1). And that angle will be the inverse cosine of their
dot product, since both vectors have magnitude of one.

Since n(s)(k(s))−1α′′(s) =
(
− cos sc ,− sin s

c , 0
)
, then the dot product of it and (0, 0, 1) is zero, implying that the

cosine of the angle between them is zero, which in turn confirms that the angle between them is π
2 .

(e)

This is similar to the previous problem except that we will use t(s) in place of n(s). Because

t(s) · (0, 0, 1) =

(
−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c

)
· (0, 0, 1) =

b

c

i.e. the cosine of the angle between them is a constant, then the angle bewteen t and (0, 0, 1) is constant, since they
both have a magnitude of one.
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(a)

Since

s(t) =

∫ t

t0

|α′(t)|dt

then by the fundamental theorem of calculus we have ds/dt = |α′(t)|, which implies dt/ds = 1/|α′(t)|.
Taking the derivative of both sides of the above equation leads to the following sequence of equations.

d2t/d2s =
d

ds

1

|α′(t)|

=
d

ds

1√
α′ · α′

=
−
(
α′′ · α′ dtds + α′ · α′′ dtds

)
2
√

(α′ · α′)3

=
−(α′′ · α′) dtds
|α′|3

=
−(α′′ · α′)
|α′|4

(b)

(c)

(d)

Assuming that the yet-to-be-proven part (b) of this problem is true, then the signed curvature is

k(t) =
α′ ∧ α′′

|α′|3

=
(x′, y′) ∧ (x′′, y′′

|(x′, y′)|3

=
x′y′′ − x′′y′(√
(x′)2 + (y′)2

)3
=

x′y′′ − x′′y′(
(x′)2 + (y′)2

)3/2
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