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Curvature
α(t) = (a cos t, b sin t)

α′(t) = (−a sin t, b cos t)

α′′(t) = (−a cos t,−b sin t)

k(t) = |α′′(t)| =
√
a2 cos2 t+ b2 sin2 t

Vertices Using k, we can determine the vertices of α by finding the values of t which make k′(t) zero. Since

k′(t) =
−2a2 cos t sin t+ 2b2 sin t cos t

2
√
a2 cos2 t+ b2 sin2 t

=
−a2 sin(2t) + b2 sin(2t)

2
√
a2 cos2 t+ b2 sin2 t

=
(b2 − a2) sin(2t)

2
√
a2 cos2 t+ b2 sin2 t

then k′(t) can only be zero when sin(2t) is zero, i.e. at t = nπ
2 for n ∈ Z. Since the domain is t ∈ [0, 2π], then there

are vertices at 0, π
2 , π, 3π

2 , and 2π, however, α(0) = α(2π) so there are only four unqiue vertices at α(0) = (a, 0),
α(π2 ) = (0, b), α(π) = (−a, 0), and α( 3π

2 ) = (0,−b).
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1 Denote the curve in question by α. The Fundamental Theory of The Local Theory of Curves allows us to translate
and rotate the trace of α without affecting its curvature. So “move” the curve such that p is the origin and T align
with the x-axis. Furthermore, reparametrize α by arc length, s, and such that α(0) = p and α(s) for positive s
“heads towards” the line L.

With these changes, let’s evaluate the second order Taylor series exansion of α(s), given by

α(s) = α(0) + sα′(0) +
s2

2
α′′(0) +R (2.1)

where R is the sum of the higher order terms. We know that α(0) is p = (0, 0). Because s parametrized α by arc
length, then α′(0) is the unit tangent vector at zero, which, since we aligned T with the x-axis, means simply that
α′(0) = (1, 0). Furthermore, we know α′′(0) = kn to be perpendicular to α′(0), meaning the normal vector n is
(0, 1), with the sign and magnitude of α′′(0) being determined by k. Substituting these realizations into Equation
2.1, we get

α(s) = (d, h) = (0, 0) + s(1, 0)± k
s2

2
(0, 1) +R = (s, 0)±

(
0, k

s2

2

)
+R

where d and h are as defined in the problem’s statement. Thus denoting R by (Rx, Ry) we have that d = s + Rx

and h = ± k s
2

2 +Ry. The first equation can be rearranged as d− s = Rx, which tells us that s→ d as s→ 0 since
Rx → 0 as s→ 0. The second equation can be rearranged like

± k =
2h

s2
+

2Ry
s2

and it informs us that

|k| = lim
s→0

2h

s2

since
Ry

s2 → 0 as s→ 0, but because we saw above that s→ d as s→ 0, then

|k| = lim
d→0

2h

d2

1I was guided to this solution by do Carmo’s in the back of the book.
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2 Denote the curve contained inside of a circle by α. While maintaining the same center, shrink the circle, C, until
it first touches α. Now either there are no points at which C and α differ or there is at least one. In the first case,
this would mean α would trace out C in which case the curvature of α, |k|, would be 1/r and certainly satisfies
|k| ≥ 1/r. So assume that a point in α, call it q, differs from C. Denote by p, the point in the intersection of C and
α such that |tq − tp| is minimal, where α(tq) = q and α(tp). There may be multiple such points p, but in that case,
we can arbitrarily pick one and our argument still stands.

Now, making use of the Fundamental Theorem of The Local Theory of Curves, orient both α and C similarly
to the previous problem, i.e. make p be the orgin and align the tangent vector of C at p with the x-axis. With this
orientation, for a given d (defined as in the previous problem) hC ≤ hα. Because of this we have

1

r
= |kC | = lim

d→0

2hC
d2
≤ lim
d→0

2hα
d2

= |kα|

by the previous problem, yielding |kα| ≥ 1/r as needed.
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Let α : [0, `]→ R2 be a simple closed plane curve such that 0 < k ≤ c for some constant c. Because α has positive
curvature that’s always less than c, then its curvature is always less than a circle of radius 1

c . Since α is simple and
closed, this implies that some circle of radius 1

c , call it S1, can be situated within and without intersection with the
interior of the trace of α. Hence the area of the interior of α, A, is bounded below by the area of S1, π

c2 . Thus

4π(A) ≥ 4π
( π
c2

)
and then making use of the Isoperimetric Inequality we get

`2 ≥ 4πA ≥ 4π2

c2

or in other words, ` ≥ 2π
c , given the positivity of ` and c.

5

(a)

The mapping defined by t→ E(f+ th) has a critical point at t = 0 because f minimizes E(·) and E(f+ th)→ E(f)
as t→ 0.

(b)

(c)

2I was guided to this solution by do Carmo’s in the back of the book.
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