
Math 501: Differential Geometry
Homework 7

Lawrence Tyler Rush
<me@tylerlogic.com>

April 7, 2013

http://coursework.tylerlogic.com/courses/math501/homework07



1

Taken off the homework.

2

3 do Carmo pg 212 problem 11

Let X be a parametrization of a surface with normal N . Define Y to be

Y (u, v) = X(u, v) + aN(u, v) (3.1)

for some positive a.

(a)

We know the following to hold

Nu = a11Xu + a21Xv

Nv = a12Xu + a22Xv

where (aij) is the matrix representation of the differential of N . Equation 3.1 yields

Yu = Xu + aNu

Yv = Xv + aNv

and thus combining the two sets of equations above we are left with

Yu = Xu + a(a11Xu + a21Xv) = (1 + aa11)Xu + aa21Xv

Yv = Xv + a(a12Xu + a22Xv) = aa12Xu + (1 + aa22)Xv

With this, we can take the cross product of Yu and Yv revealing that

Yu ∧ Yv = ((1 + aa11)Xu + aa21Xv) ∧ (aa12Xu + (1 + aa22)Xv)

= (1 + aa11)aa12Xu ∧Xu + aa21aa12Xv ∧Xu + (1 + aa11)(1 + aa22)Xu ∧Xv + aa21(1 + aa22)Xv ∧Xv

= aa21aa12Xv ∧Xu + (1 + aa11)(1 + aa22)Xu ∧Xv

= −aa21aa12Xu ∧Xv + (1 + aa11)(1 + aa22)Xu ∧Xv

= −aa21aa12Xu ∧Xv + (1 + aa11 + aa22 + aa11aa22)Xu ∧Xv

= (1 + a(a11 + a22) + a2(a11a22 − a21a12))Xu ∧Xv

Now since K = det([dN ]) and H = −1/2 tr([dN ]) for Gaussian and mean curvatures of X, then

a11 + a22 = −2H

and
a11a22 − a21a12 = K

resulting in
Yu ∧ Yv = (1− 2Ha+Ka2)Xu ∧Xv
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(b)

Let F be the homeomorphism from S to the parallel surface defined by F (p) = p+ aN(p). Thus we have

Fu = Xu + aNu = Xu + a(a11Xu + a21Xv) = (1 + aa11)Xu + aa21Xv

Fv = Xv + aNv = Xv + a(a12Xu + a22Xv) = aa12Xu + (1 + aa22)Xv

indicating that

[dFp]{Xu,Xv} =

(
dFp(Xu) dFp(Xv)

)
=

(
Fu Fv

)
=

(
[Fu]X [Fv]X

)
=

(
1 + aa11 aa12
aa21 1 + aa22

)
which results in

det (dFp) = 1 +aa11 +aa22 +aa11aa22−aa12aa21 = 1 +a(a11 +a22) +a2(a11a22−a12a21) = 1− 2Ha+Ka2 (3.2)

Now because of part (a), we know that the normal field for the parallel surface, call it M , at F (p) is the same
as the normal field for S at p, i.e.

N(p) = M(F (p)) (3.3)

We will make use of this to determine the Gaussian and mean curvatures.

Gaussian Curvature Using the chain rule with Equation 3.3 gives us that

dNp = dMF (p)dFp

det (dNp) = det
(
dMF (p)dFp

)
det (dNp) = det

(
dMF (p)

)
det (dFp)

which leads to

det
(
dMF (p)

)
=

det (dNp)

det (dFp)
=

K

det (dFp)
(3.4)

The combination of Equation 3.2 and Equation 3.4 leads to the parallel surface having a Gaussian curvature, K, of

K = det(dMF (p)) =
K

1− 2Ha+Ka2

Rush 3



Mean Curvature Again using the chain rule with Equation 3.3 and employing Lemma A.1 and Equation 3.4 we
find that

dNp = dMF (p)dFp

dN−1p = dF−1p dM−1F (p)

dFpdN
−1
p = dM−1F (p)

tr(dM−1F (p)) = tr(dFpdN
−1
p )

tr(dMF (p))

det(dMF (p)
= tr([dFp]{Xu,Xv}[dNp]

−1
{Xu,Xv})

tr(dMF (p)) = det(dMF (p)) tr

((
1 + aa11 aa12
aa21 1 + aa22

)
1

det(dNp)

(
a22 −a12
−a21 a11

))
tr(dMF (p)) =

det(dNp)

det(dFp)

1

det(dNp)
tr

((
1 + aa11 aa12
aa21 1 + aa22

)(
a22 −a12
−a21 a11

))
tr(dMF (p)) =

1

1− 2Ha+Ka2
(a22 + aa11a22 − aa12a21 − aa12a21 + a11 + aa11a22)

tr(dMF (p)) =
1

1− 2Ha+Ka2
((a11 + a22) + 2a(a11a22 − a12a21))

tr(dMF (p)) =
1

1− 2Ha+Ka2
(−2H + 2aK)

tr(dMF (p)) =
−2(H − aK)

1− 2Ha+Ka2

Hence the mean curvature, H, is

H = −1

2
tr(dMF (p)) =

H − aK
1− 2Ha+Ka2

(c)

4 do Carmo pg 229 problem 9

Let S1 and S2 be regular surfaces with a conformal maps ϕ : S1 → S2 and ψ : S2 → S3.

(a) Inverses of isometries are isometries

The proof in Problem section 8 part (a) holds for this when λ is the constant function of 1.

(b) Composition of isometries is an isometry

The proof in Problem section 8 part (b) holds for this when λϕ and λψ are both the constant functions of 1.

5 do Carmo pg 229 problem 10

Let ϕ : S → S be a rotation about the axis of a surface of revolution, S. Because it is simply a rotation, ϕ is
the restriction of some linear map of rotation, R : R3 → R3, to S. Hence for v ∈ S, ϕ(p) = Ap for some matrix
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Figure 1: A planar surface with two points for no curve between the two has a length equal to the intrinsic distance.

of rotation A. Note that rotational matrices such as A are orthogonal. Thus we have the following for p ∈ S and
v ∈ TpS with some curve α such that α(0) = p and α′(0) = v

dϕp(v) =
d

dt

∣∣∣∣
t=0

ϕ(α(t)) =
d

dt

∣∣∣∣
t=0

Aα(t)

but because A is not dependent on t

d

dt

∣∣∣∣
t=0

Aα(t) = Aα′(t)|t=0 = Aα′(0) = Av

resulting in dϕp(v) = Av. Thus since A is orthogonal then for any v, w ∈ TpS

〈dϕp(v), dϕp(w)〉 = 〈Av,Aw〉 = 〈v, w〉

thereby giving us that ϕ is an isometry.

6

(a)

The drawing in Figure 1 has two points p and q in a planar surface for which there is no curve between them with
length equal to the intrinsic distance between the two points. A curve that would potentially have a length of the
intrinsic distance would need to go through the hole in the middle of the surface, but it obviously cannot while
remaining a curve of the surface.

(b)

From our first homework assignment, we know that for any curve α in S with α(a) = p and α(b) = q, L(α)ba ≥ |p−q|.
Thus because d(p, q) is the infimum a set of the lengths (from a to b) of curves in S which pass through p and q at
a and b, respectively, then d(p, q) ≥ |p− q|.
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(c)

7

(a) Coefficients of the first fundamental form.

X(φ, θ) = (cos θ cosφ, cos θ sinφ, sin θ)

Xφ = (− cos θ sinφ, cos θ cosφ, 0)

Xθ = (− sin θ cosφ,− sin θ sinφ, cos θ)

E = 〈Xφ, Xφ〉 = cos2 θ sin2 φ+ cos2 θ cos2 φ = cos2 θ

F = 〈Xφ, Xθ〉 = cos θ sinφ sin θ cosφ− cos θ cosφ sin θ sinφ = 0

G = 〈Xθ, Xθ〉 = sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ = sin2 θ + cos2 θ = 1

(b) Relation of M , M̃ , X, and Y

Since M̃ is the map from the domain of X to the domain of Y , then we have

M(X(φ, θ) = Y (M̃(φ, θ)) (7.5)

for (φ, θ) in the domain of X.

(c) Coefficients of the first fundamental form of X

By Equation 7.5 we have

X(φ, θ) = M(X(φ, θ) = Y (M̃(φ, θ)) = Y (φ, z(θ)) = (cosφ, sinφ, z(θ))

which results in

Xφ = (− sinφ, cosφ, 0)

Xθ = (0, 0, z′(θ))

E =
〈
Xφ, Xφ

〉
= sin2 φ+ cos2 φ = 1

F =
〈
Xφ, Xθ

〉
= 0

G =
〈
Xθ, Xθ

〉
= (z′(θ))2

(d)

In order to have M be a conformal map, we must satisfy

E = λ2E

1 = λ2 cos2 θ

F = λ2F

0 = 0
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and

G = λ2G

(z′(θ))2 = λ2

indicating that z′(θ) must be sec θ.

(e)

From the result of the previous part of the problem we know that

z(θ) =

∫
sec θ = ln | sec θ + tan θ|

assuming z(0) = 0 and z(θ) > 0 for θ ∈ (0, π/2).

8

Let S1 and S2 be regular surfaces with a conformal maps ϕ : S1 → S2 and ψ : S2 → S3.

(a) Inverses of conformal maps are conformal

Since S1 and S2 are diffeomorphic, then TpS1 = Tϕ(p)S2 and dϕp = dϕ−1ϕ(p) for p ∈ S2. Thus for vectors v1, v2 ∈
TpS2 = Tϕ−1(p)S1, the vectors dϕ−1p (v1) and dϕ−1p (v2) are vectors in Tp(S1). So we have〈

dϕϕ−1(p)(dϕ
−1
p (v1)), dϕϕ−1(p)(dϕ

−1
p (v2))

〉
= λ2(p)

〈
dϕ−1p (v1), dϕ−1p (v2)

〉
which in turn implies 〈

d(ϕ ◦ ϕ−1)p(v1), d(ϕ ◦ ϕ−1)p(v2)
〉

= λ2(p)
〈
dϕ−1p (v1), dϕ−1p (v2)

〉
however, ϕ ◦ ϕ−1 is the identity map implying that the above equation simplifies to

〈v1, v2〉 = λ2(p)
〈
dϕ−1p (v1), dϕ−1p (v2)

〉
which gives us what we’re looking for 〈

dϕ−1p (v1), dϕ−1p (v2)
〉

=
1

λ2(p)
〈v1, v2〉

(b) Composition of conformal maps is conformal

Let p ∈ S1 and v1, v2 ∈ TpS. Then we have the following

〈d(ψ ◦ ϕ)p(v1), d(ψ ◦ ϕ)p(v2)〉 =
〈
dψϕ(p)(dϕp(v1)), dψϕ(p)(dϕp(v1))

〉
= λ2ψ(ϕ(p)) 〈dϕp(v1), dϕp(v1)〉
= λ2ψ(ϕ(p))λ2ϕ(p) 〈v1, v2〉

so for λ(p) = λψ(ϕ(p))λϕ(p) we have

〈d(ψ ◦ ϕ)p(v1), d(ψ ◦ ϕ)p(v2)〉 = λ2(p) 〈v1, v2〉

giving us the fact that ϕ ◦ ψ is conformal since it is a diffeomorphism.
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(c)

Appendix

A Helpful Lemmas

Lemma A.1 The trace of the inverse of a two-dimensional matrix A is

tr(A−1) =
tr(A)

det(A)

Proof. Let A be the matrix denoted by

(
a b
c d

)
then

A−1 =
1

det(A)

(
d −b
−c a

)
which in turn leads to

tr(A−1) = tr

(
1

det(A)

(
d −b
−c a

))
=

1

det(A)
tr

(
d −b
−c a

)
=

d+ a

det(A)
=

tr(A)

det(A)

Rush 8


	
	
	do Carmo pg 212 problem 11
	
	
	

	do Carmo pg 229 problem 9
	Inverses of isometries are isometries
	Composition of isometries is an isometry

	do Carmo pg 229 problem 10
	
	
	
	

	
	Coefficients of the first fundamental form.
	Relation of M, , X, and Y
	Coefficients of the first fundamental form of X
	
	

	
	Inverses of conformal maps are conformal
	Composition of conformal maps is conformal
	

	Helpful Lemmas

