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Taken off the homework.
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3 do Carmo pg 212 problem 11

Let X be a parametrization of a surface with normal N. Define Y to be

Y (u,v) = X(u,v) + aN(u,v) (3.1)
for some positive a.
(a)
We know the following to hold
Ny = anXy+anX,
Ny = a12Xy +a2X,
where (a;;) is the matrix representation of the differential of V. yields
Y. = X,+aN,
Y, = X,+aN,

and thus combining the two sets of equations above we are left with

Y. = Xyu+alanXu+anX,) =14 aa1)X, + aa X,
Y, = Xy+a(aaXy+a2X,) =aa2X, + (1 +aa)X,

With this, we can take the cross product of Y, and Y, revealing that

Yo Y, = ((14aa11)Xy+ aa21X,) A (aa12Xy, + (1 + aage)X,)

(1 + aair)aara Xy A Xy + aasiaa12X, A Xy + (1 + aa11)(1 4+ aa22) X, A X, + aazr (1 + aaze) X, A X,
= aagiaa12X, A Xy + (1 + aa11)(1 + aase) X, A X,

—aagraa1n Xy A Xy + (14 aarr) (1 + aae) Xy A X,

—aagraa12 Xy, A Xy + (14 aarr + aags + aariaass) X, A X,

= (14 a(aiy + ag2) + a*(ar1a2s — azia12)) Xy A X,

Now since K = det([dN]) and H = —1/2tr([dN]) for Gaussian and mean curvatures of X, then
a1l +agp = —2H

and
aiiae — azia;p = K

resulting in
Y,AY, =(1—-2Ha+ Ka*) X, A X,
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(b)

Let F be the homeomorphism from S to the parallel surface defined by F(p) = p + aN(p). Thus we have

F, = X,+aN,=X,+a(a11 Xy + an1X,) =1+ aan1)Xy + aa X,
Fv = XU + an = Xv + a(angu + QQZ.X»U) = aangu + (]. + aagg)Xv

indicating that

[dFy)(x0.x,) = <de(Xu) de(XU)) — <Fu F) _ (Wx [E,]X> _ ( 1 +aay  aap )

aas1 1+ aasgo
which results in
det (de) =14 aai1 +aass + aaji1aa2s —aaioaas; = 1+ a(a11 + a22) + a2(a11a22 — a12a21) =1—-2Ha+ KGQ (32)

Now because of part (a), we know that the normal field for the parallel surface, call it M, at F'(p) is the same
as the normal field for S at p, i.e.

N(p) = M(F(p)) (3.3)

We will make use of this to determine the Gaussian and mean curvatures.

Gaussian Curvature Using the chain rule with [Equation 3.3| gives us that

dN, = dMp)dF,
det (dN,) = det (dMF(p)de)
det (dN,) = det (dMF(p)) det (dF})
which leads to det (dN X
det (dMpy) = LU@ND) _ (3.4)

~ det(dF,)  det (dF})

The combination of [Equation 3.2 and [Equation 3.4|leads to the parallel surface having a Gaussian curvature, K, of

— K
K = det(dMF(p)) = —1 — ZHCL n KaQ
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Mean Curvature Again using the chain rule with and employing Lemma and we
find that

dN, = dMp@dF,
dN, ' = dF,'dMg,
—1 —1
dF,dN, = dMF(p)

tr(dMp()) = tr(dF,dN, ")

tr(dMF(p)) 1

——=> = tr([dF, dN,

det(dMp(p) HdBl e xnl p]{Xu’XU})

t(dMp) = det(dMpg) 1+ aaq; aals 1 az2  —a12

F(p) F(p) aaz;  1+aaze ) det(dN,) \ —a21 an
det(dN,) 1 1+ aai; aais azy  —ai2
tr(dM = v t
r(dMpp)) det(dF,) det(dN,) : (< aas 1+ aass —a21 a1l

1

tr(dMpq)) = m(am + aai1a2 — aG12021 — Aa12021 + a11 + AG11G22)
1

tr(dMF(p)) = m((an + ag2) + 2a(ar1a22 — a12a21))
1

—2(H — aK)
M -
wiMrw) = T oHat K
Hence the mean curvature, H, is
_ 1 H—aK
H=——tr(dM =
3 WdMre) = TS g T R

()

4 do Carmo pg 229 problem 9

Let S and Sy be regular surfaces with a conformal maps ¢ : S — S, and ¥ : S5 — Ss.

(a) Inverses of isometries are isometries

The proof in Problem section 8 part (a) holds for this when A is the constant function of 1.

(b) Composition of isometries is an isometry

The proof in Problem section 8 part (b) holds for this when A, and Ay are both the constant functions of 1.

5 do Carmo pg 229 problem 10

Let ¢ : S — S be a rotation about the axis of a surface of revolution, S. Because it is simply a rotation, ¢ is
the restriction of some linear map of rotation, R : R — R3, to S. Hence for v € S, ¢(p) = Ap for some matrix
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Figure 1: A planar surface with two points for no curve between the two has a length equal to the intrinsic distance.

of rotation A. Note that rotational matrices such as A are orthogonal. Thus we have the following for p € S and
v € T),S with some curve a such that «(0) = p and o/ (0) = v

d
» pla(t)) = - i Aa(t)

d
depp(v) = dt
but because A is not dependent on ¢

0 Aa(t) = Ad/(t)],_o, = Ad’(0) = Av

t=0

resulting in dy,(v) = Av. Thus since A is orthogonal then for any v,w € T,,S
(dipp(v), diop(w)) = (Av, Aw) = (v, w)

thereby giving us that ¢ is an isometry.

6

(a)

The drawing in has two points p and ¢ in a planar surface for which there is no curve between them with
length equal to the intrinsic distance between the two points. A curve that would potentially have a length of the
intrinsic distance would need to go through the hole in the middle of the surface, but it obviously cannot while
remaining a curve of the surface.

(b)

From our first homework assignment, we know that for any curve « in S with a(a) = p and a(b) = ¢, L(a)® > |p—q|.
Thus because d(p, q) is the infimum a set of the lengths (from a to b) of curves in S which pass through p and ¢ at
a and b, respectively, then d(p,q) > |p — q|.
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(a) Coefficients of the first fundamental form.

X(¢,0) =
Xy =
Xy = sin 0 cos ¢, — sin 6 sin ¢, cos 0)

(cos B cos ¢, cos O sin ¢, sin 6)
(—
(—
E = (X4, Xy) =cos? 0 sin® ¢ + cos? 0 cos? ¢ = cos? 0
(
(

cos 0 sin ¢, cos 6 cos ¢, 0)

F = (X4, Xg) = cosfsingsinfcos¢$ — cos b cos ¢sinfsin ¢ = 0
G = (Xy,Xp) =sin?6fcos? ¢ +sin? fsin? ¢ + cos? § = sin® § + cos® f = 1

(b) Relation of M, M, X,and Y

Since M is the map from the domain of X to the domain of Y, then we have

M(X(¢,0) =Y (M(,0)) (7.5)
for (¢,0) in the domain of X.

(c) Coefficients of the first fundamental form of X

By we have
X(6,0) = M(X(6,0) = Y (1(6,6)) = Y (6, (0)) = (cos 6,sin &, 2(9))

which results in

Xy = (—sing,cosg,0)

Xy = (0,0,2/(9))
E = (X4, Xy)=sin’¢+cos’p=1
F = (X4,X9)=
G = (Xo,Xo)

(d)

In order to have M be a conformal map, we must satisfy

E = MFE

1 = Mcos?6
F = MF
0 = 0



and

indicating that 2’(6) must be sec#.

(e)

From the result of the previous part of the problem we know that
z(0) = /Sec9 = In|secf + tan 6|

assuming z(0) = 0 and z(#) > 0 for 6 € (0,7/2).

8

Let S; and Sy be regular surfaces with a conformal maps ¢ : S — S; and ¥ : S5 — Ss.

(a) Inverses of conformal maps are conformal

Since 57 and S are diffeomorphic, then T),S1 = T,(;,)S2 and dy, = dgo;(lp) for p € So. Thus for vectors vy, vy €
TSz = Tip-1() S1, the vectors di, ! (v1) and dg, ! (v2) are vectors in Tj,(S1). So we have

{dep 1) (dp, " (v1)), dp1(p) (dipy, H(02))) = A*(p) (dep, * (v1), dp, * (v2))

which in turn implies

{d(po @™ )p(v1),d(p o )p(va)) = N(p) (dp, t (v1), dip,  (v2))

is the identity map implying that the above equation simplifies to

(v1,v2) = X*(p) <d90;1(01), d¢;1(02)>

-1
however, @ o

which gives us what we’re looking for

(doy (v1),depy, H(v2)) = 57— (v1,v2)

(b) Composition of conformal maps is conformal

Let p € S and v;,v2 € T,S. Then we have the following

(d(w o p)p(vr),d( o @)p(va)) = (dibyip)(diop(vr), dibyy) (dpp(v2)))
N2 ((p)) (dpp(v1), dioy(v1))
= AN (e@)A%(p) (v1,v2)

0 for A(p) = Ay (2(p)) A (p) we have
(AW 0 @)p(01), A1 0 ©)p(v2)) = N(p) (w1, v3)

giving us the fact that ¢ o ¢ is conformal since it is a diffeomorphism.
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Appendix

A Helpful Lemmas

Lemma A.1 The trace of the inverse of a two-dimensional matriz A is

_ tr(4)
~ det(A)

tr(A™1)

Proof. Let A be the matrix denoted by < CCL Z ) then

which in turn leads to

b= (det1<A> ( L >) - 5 “( ‘
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