Math 502: Abstract Algebra Homework 1

Lawrence Tyler Rush <me@tylerlogic.com>

February 1, 2014 http://coursework.tylerlogic.com/courses/upenn/math502/homework01 1

First, a helpful Lemma. Let S be defined as in the problem's specification.

Lemma 1.1. The set S is $n\mathbb{Z}$ for some $n \in \mathbb{N}_{>0}$.

Proof. First note that S has positive elements, for if $s \in S$ and $s \neq 0$ (such an s exists since S has at least two different elements), then either s is positive or s - 2s is; the latter being guaranteed to be in S due to the closure of addition and subtraction.

As a subset of the well-ordered set \mathbb{N} , the set $S \cap \mathbb{N} - \{0\}$, must have a least element, call it n. Certainly all integer multiples of n are in S as S is closed under addition and subtraction. So in the least,

 $n\mathbb{Z} \subseteq S \tag{1.1}$

Assume for later contradiction that there is an $a \in S$ for which $n \not|a$. Then the division algorithm, since $n \neq 0$, yields the existence of $q, r \in \mathbb{Z}$ with $0 \leq r < |n|$ such that a = qn + r. Therefore $r = a - qn \in S$ by the closure of addition and subtraction on S. Since a was assumed to not be a multiple of n, then 0 < r < |n|, but this contradicts the fact that n is the least element of $S \cap \mathbb{N} - \{0\}$. Thus, no such a exists, moreover all elements of S are multiples of n. Hence combining this with equation 1.1 leaves us with $S = n\mathbb{Z}$.

(a)

Given that $S = n\mathbb{Z}$ by Lemma 1.1, define $f : \mathbb{N} \to \mathbb{N} \cap S$ by

$$f(m) = mr$$

This is surjective since any element of $\mathbb{N} \cap S$ has the form mn and thus f will map m to it. The map is injective because if f(m) = f(m') for $m, m' \in \mathbb{N}$, then nm = nm' and thus m = m'. So f is a bijection.

Because multiplication by a nonzero natural number preserves order, then f is an order-preserving map as it simply multiplies its input by the nonzero natural number n.

Finally to prove uniqueness, let $g: \mathbb{N} \to \mathbb{N} \cap S$ be an order-preserving bijection. We first note that g(0) = 0 because 0 is the least element of both \mathbb{N} and $\mathbb{N} \cap S$; any other output for g would contradict its given order-preservation. Now assume that there exists an N such that for all k with $0 \le k < N$ we have g(k) = f(k). Define ℓ by $\ell = \min\{j \in S \cap \mathbb{N} \mid j \ge f(N) = mN\}$, remembering that $S = n\mathbb{Z}$. We know ℓ exists since $S \cap \mathbb{N}$ is a subset of the well-ordered set \mathbb{N} . Thus $f(k) = mk < \ell$ for all k such that $0 \le k < N$, and therefore since f is an order-preserving bijection, $f(N) = \ell$. However, the inductive hypothesis implies that g, being an order-preserving bijection, must also have that $g(N) = \ell$. Hence g and f are one in the same.

(b)

The fact that every element of S is a multiple of f(1) follows directory from Lemma 1.1, the fact that n generates $n\mathbb{Z}$, and the construction of f, namely f(1) = n.

(c)

Let G be a cyclic group with subgroup H and generator g. If H is trivially $\{1\}$, then we are done, as 1 generates H.

So assume that H has at least two distinct elements. Define $S = \{n \mid g^n \in H\}$. The set S then also has at least two different elements. Now for $n, m \in S$ we have that $g^n, g^m \in H$ which implies that $g^n g^m = g^{n+m} \in H$ as H is a group. Hence $n + m \in S$ implying the closure of S under addition. Also since H is a group, $(g^m)^{-1} = g^{-m} \in H$ informing us that $n - m \in S$. Hence S is closed under subtraction. In summary, S is a set with at least two different elements which is closed under addition and subtraction.

Thus by parts (a) and (b) of this problem, we have a unique order-preserving map, $f : \mathbb{N} \to S \cap \mathbb{N}$, for which every element of S is an integer multiple of f(1). In other words, for every $g^n \in H$, there is some integer a such that $g^n = g^{af(1)} = (g^{f(1)})^a$. Hence $g^{f(1)}$ generates H. (a)

Let $a, b \in \mathbb{Z}$ be nonzero, and $S \subset \mathbb{Z}$ be the set $\{ar + bs \mid r, s \in \mathbb{Z}\}$. If a = b, then the existence of the greatest common divisor of a, a is trivial since the a would be the integer such that any other integer which divides a also divides a.

So let's proceed assuming that $a \neq b$. With this, we know that S has at least two elements, thereby allowing us to make use of the problem 1. So let $f\mathbb{N} \to \mathbb{N} \cap S$ be the unique order-preserving bijection, and define c to be f(1). So for any d that divides a and b, d will also divide every element of S. This will include c since part (b) of problem 1 states that c generates all of S and c is therefore contained in S. So d divides c.

Relation of gcd(a, b) to S The greatest common divisor of a, b is the value c such that c generates $S = \langle a, b \rangle$.

(b)

Let a, b be relatively prime non-zero integers and c an integer such that a|bc. Let $as + cr \in \langle a, c \rangle$ for some $s, r \in \mathbb{Z}$. Since a and b are relatively prime, their greatest common divisor is 1, meaning that $\langle a, b \rangle = \langle 1 \rangle = \mathbb{Z}$. Therefore $r \in \langle a, b \rangle$. However, for $n, m \in \mathbb{Z}$ such that an+bm = r, this implies that as+cr = as+c(an+bm) = as+can+cbm. Thus a divides as + cr, since a|bc, and therefore every element of $\langle a, c \rangle$, including a(0) + c(1) = c is divisible by a.

(c)

We will define a prime according to Jacobson [Jac09, pg. 22] as an integer $p \neq 0, \pm 1$ with $\pm p$ and ± 1 being its only divisors.

Every nonzero integer can be decomposed into $\pm 1p_1^{e_1}\cdots p_m^{e+m}$ We will first prove this for positive integers, then for negative ones.

As a base case we have that for 1 or any positive prime p, the decomposition is 1 and p, respectively. So let $n \in \mathbb{N}$ be composite and assume that all natural numbers less than n can be decomposed as per above. Then we can find positive integers q, r < n such that qr = n. By the inductive hypothesis, then q and r can be decomposed into \pm a product powers of primes. Hence so can n, namely the decomposition produced by the product of the decomposition of q and r.

As for a negative integer, m, the above proof for decomposition of positive integers informs us that there is such a decomposition for |m|, and thus simply negating the decomposition yields a decomposition for m.

The decomposition is unique. As a base case we have that for 1 or any positive prime p, the decomposition 1 and p, respectively, are unique. So let $n \in \mathbb{N}$ be composite and assume that all natural numbers less than n can be uniquely decomposed. Let $p_1^{e_1} \cdots p_a^{e_a}$ and $q_1^{f_1} \cdots q_b^{f_b}$ be decompositions of n. Therefore p_1 must divide $q_1^{f_1} \cdots q_b^{f_b}$ since both decompositions are equal, in other words, there is some q_i equal to p_1 . Thus $p_1^{e_1-1} \cdots p_a^{e_a}$ and $q_1^{f_1} \cdots q_i^{f_b-1} \cdots q_b^{f_b-1}$ are equal, but these integers are less than n, which our inductive hypothesis tells us that their prime decompositions are unique. Therefore their multiplication by $p_1 = q_i$ will be unique decompositions of n.

As for a negative integer, m, the above proof for unique decomposition of positive integers informs us that there is such a unique positive decomposition for |m|, and thus simply negating the it yields a unique decomposition for m.¹

¹Inspiration for this proof drawn from [Jac09, pg. 22]

Suppose that m, n are integers that are relatively prime. From problem two, we know that there exist integers u, v such that $um + vn \equiv 1$. From this we obtain that $um + vn \equiv 1 \mod n$, but since vn is a multiple of n this yields $um \equiv 1 \mod n$. Similarly we obtain $vn \equiv 1 \mod m$. These two equations in turn give us that for some integers a, b,

 $bum \equiv b \mod n \quad \text{and} \quad avn \equiv a \mod m$ (3.2)

As multiples of m and n, respectively, bum and avn have that

 $bum \equiv 0 \mod m$ and $avn \equiv 0 \mod n$

which when combined with Equation 3.2, yields

 $avn + bum \equiv a \mod m$ and $avn + bum \equiv b \mod n$

Thus the desired formula for c is c = avn + bum

4

(a)

Let $a \in \mathbb{N}$ be a n + 1 decimal digit number. Let the decimal digits of a be represented by d_0, d_1, \ldots, d_n where each d_i is in $\{0, 1, \ldots, 9\}$ and d_0 corresponds to the lowest magnitude digit, and d_n , the highest. Then we have that

$$a = \sum_{i=0}^{n} d_i 10^i$$

In class we saw that the canonical addition and multiplication operations in $\mathbb{Z}/9\mathbb{Z}$ are compatible with the addition and multiplication operations of the integers. This yields to us

$$a \equiv \left(\sum_{i=0}^{n} d_i 10^i\right) \mod 9 = \sum_{i=0}^{n} (d_i \mod 9) \left(10^i \mod 9\right) = \sum_{i=0}^{n} (d_i \mod 9) \underbrace{(10 \mod 9) \cdots (10 \mod 9)}_{i \text{ times}}$$

however, $1 \equiv 10 \mod 9$, leaving us with

$$a \equiv \sum_{i=0}^{n} (d_i \bmod 9) = \left(\sum_{i=0}^{n} d_i\right) \bmod 9$$

again using the compatibility of addition in $\mathbb{Z}/9\mathbb{Z}$ with integer addition.

(b)

Let $a \in \mathbb{N}$ be a n + 1 decimal digit number. Let the decimal digits of a be represented by d_0, d_1, \ldots, d_n where each d_i is in $\{0, 1, \ldots, 9\}$ and d_0 corresponds to the lowest magnitude digit, and d_n , the highest.

Formula for 11 We can see that 10 is a unit of $\mathbb{Z}/11\mathbb{Z}$ with order 2 in $(\mathbb{Z}/11\mathbb{Z})^{\times}$. Therefore $10^{2i} \equiv 10 \mod 11$ and $10^{2i+1} \equiv 1 \mod 11$ for integer *i*. We can also say that $d_i = 0$ when i > n, and because of it, we can write

$$a = \sum_{i=0}^{n} d_i 10^i = \sum_{i=0}^{n} d_{2i} 10^{2i} + \sum_{i=0}^{n} d_{2i+1} 10^{2i+1}$$

which implies

$$a \equiv \left(\sum_{i=0}^{n} d_{2i} 10^{2i} + \sum_{i=0}^{n} d_{2i+1} 10^{2i+1}\right) \mod 11 \equiv \sum_{i=0}^{n} d_{2i} \left(10^{2i} \mod 11\right) + \sum_{i=0}^{n} d_{2i+1} \left(10^{2i+1} \mod 11\right) \equiv 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i+1} (10^{2i+1} \mod 11) = 10 \sum_{i=0}^{n} d_{2i} + \sum_{i=0}^{n} d_{2i} +$$

Formula for 7 Similar to the above method for 11, 10 is a unit of $\mathbb{Z}/7\mathbb{Z}$ with order 6 in $(\mathbb{Z}/7\mathbb{Z})^{\times}$. Therefore

$$10^{0} \equiv 1 \mod 7$$

$$10^{1} \equiv 3 \mod 7$$

$$10^{2} \equiv 2 \mod 7$$

$$10^{3} \equiv 6 \mod 7$$

$$10^{4} \equiv 4 \mod 7$$

$$10^{5} \equiv 5 \mod 7$$

We can again also say that $d_i = 0$ when i > n, and because of it, we can write

$$a = \sum_{i=0}^{n} d_i 10^i = \sum_{i=0}^{n} d_{6i} 10^{6i} + \sum_{i=0}^{n} d_{6i+1} 10^{6i+1} + \sum_{i=0}^{n} d_{6i+2} 10^{6i+2} + \sum_{i=0}^{n} d_{6i+3} 10^{6i+3} + \sum_{i=0}^{n} d_{6i+4} 10^{6i+4} + \sum_{i=0}^{n} d_{6i+5} 10^{6i+5} + \sum_{i=0}^$$

which results in the following after modding by 7

$$a = \sum_{i=0}^{n} d_{6i} + 3\sum_{i=0}^{n} d_{6i+1} + 2\sum_{i=0}^{n} d_{6i+2} + 6\sum_{i=0}^{n} d_{6i+3} + 4\sum_{i=0}^{n} d_{6i+4} + 5\sum_{i=0}^{n} d_{6i+5}$$

 $\mathbf{5}$

(a) Prove Euler's totient function is multiplicative

First, let m and n be coprime integers. Then problem 1 informs use that there are integers r, s such that mr + ns = 1 or in other words mr = n(-s) + 1, which implies $mr \equiv 1 \mod n$. Hence $\overline{m} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Now let $\overline{m} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then there exists some integer r such that $mr \equiv 1 \mod (n)$. Then problem 1 implies the existence of an s such that mr = ns + 1, i.e. mr + n(-s) = 1. Hence gcd(m, n) = 1 and therefore m and n are coprime.

Combining these two results implies that an integer m is coprime to an integer n if and only if $\overline{m} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. This allots us the following equation

$$\phi(n) = \left| \left(\mathbb{Z}/n\mathbb{Z} \right)^{\times} \right| \tag{5.3}$$

The multiplicativity of ϕ According to [Cha13] the Chinese Remainder Theorem tells us that for an integer $n \geq 2$ with prime factorization $n = p_1^{e_1} \cdots p_a^{e_a}$, $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to $(\mathbb{Z}/p_1^{e_1}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_a^{e_a}\mathbb{Z})$. This in turn implies $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is isomorphic to $(\mathbb{Z}/p_1^{e_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_a^{e_a}\mathbb{Z})^{\times}$. Let m and n be coprime with prime factorizations $p_1^{e_1} \cdots p_a^{e_a}$ and $q_1^{f_1} \cdots q_b^{f_b}$, respectively. Therefore the prime factors of their prime factorization have that $p_i \neq q_j$ for each possible i, j. Now according to equation 5.3, $\phi(mn) = |\mathbb{Z}/mn\mathbb{Z}|$, and thus we have the following sequence of equations.

$$\begin{split} \phi(mn) &= \left| (\mathbb{Z}/p_1^{e_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_a^{e_a}\mathbb{Z})^{\times} \times (\mathbb{Z}/q_1^{f_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/q_b^{f_b}\mathbb{Z})^{\times} \right| \\ &= \left| (\mathbb{Z}/p_1^{e_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_a^{e_a}\mathbb{Z})^{\times} \right| \left| \left(\mathbb{Z}/q_1^{f_1}\mathbb{Z} \right)^{\times} \times \cdots \times \left(\mathbb{Z}/q_b^{f_b}\mathbb{Z} \right)^{\times} \\ &= \left| (\mathbb{Z}/m\mathbb{Z})^{\times} \right| \left| (\mathbb{Z}/n\mathbb{Z})^{\times} \right| \\ &= \phi(m)\phi(n) \end{split}$$

(b)

Let's first examine the value of $\phi(p^e)$ for prime p and positive e (note negative e is pointless to consider as it isn't

an integer). The value of $\phi(p^e)$ will be the number of integers between 1 and p^e which are coprime to p^e , but the only such integers are the positive multiples of p less than or equal to p^e . There are p^{e-1} of them, namely $p, 2p, 3p, \ldots, (p^{e-1})p$. Hence, because there are p^e positive integers less than or equal to p^e

$$\phi(p^e) = p^e - p^{e-1} = p^{e-1}(p-1) \tag{5.4}$$

Given Equation 5.4 and the fact that ϕ is multiplicative from the previous part of the problem, then for any n with prime decomposition of $p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$ where each p_i is distinct, we have the formula

$$\phi(n) = \phi(p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}) = \phi(p_1^{e_1})\phi(p_2^{e_2}) \cdots \phi(p_m^{e_m}) = p_1^{e_1-1}(p_1-1)p_2^{e_2-1}(p_2-1) \cdots p_m^{e_m-1}(p_m-1)$$

References

- [Cha13] Ching-li Chai. Excursion in elementary number theory. http://www.math.upenn.edu/~chai/502f13/ course_notes/nber_thy.pdf, 2013.
- [Jac09] Nathan Jacobson. Basic Algebra I. Basic Algebra. Dover Publications, Incorporated, 2009.