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First, a helpful Lemma. Let S be defined as in the problem’s specification.

Lemma 1.1. The set S is nZ for some n ∈ N>0.

Proof. First note that S has positive elements, for if s ∈ S and s 6= 0 (such an s exists since S has at least two
different elements), then either s is positive or s− 2s is; the latter being guaranteed to be in S due to the closure
of addition and subtraction.

As a subset of the well-ordered set N, the set S ∩ N − {0}, must have a least element, call it n. Certainly all
integer multiples of n are in S as S is closed under addition and subtraction. So in the least,

nZ ⊆ S (1.1)

Assume for later contradiction that there is an a ∈ S for which n 6 |a. Then the division algorithm, since n 6= 0,
yields the existence of q, r ∈ Z with 0 ≤ r < |n| such that a = qn + r. Therefore r = a− qn ∈ S by the closure of
addition and subtraction on S. Since a was assumed to not be a multiple of n, then 0 < r < |n|, but this contradicts
the fact that n is the least element of S ∩N−{0}. Thus, no such a exists, moreover all elements of S are multiples
of n. Hence combining this with equation 1.1 leaves us with S = nZ.

(a)

Given that S = nZ by Lemma 1.1, define f : N→ N ∩ S by

f(m) = mn

This is surjective since any element of N ∩ S has the form mn and thus f will map m to it. The map is injective
because if f(m) = f(m′) for m,m′ ∈ N, then nm = nm′ and thus m = m′. So f is a bijection.

Because multiplication by a nonzero natural number preserves order, then f is an order-preserving map as it
simply multiplies its input by the nonzero natural number n.

Finally to prove uniqueness, let g : N → N ∩ S be an order-preserving bijection. We first note that g(0) = 0
because 0 is the least element of both N and N ∩ S; any other output for g would contradict its given order-
preservation. Now assume that there exists an N such that for all k with 0 ≤ k < N we have g(k) = f(k). Define `
by ` = min{j ∈ S∩N | j ≥ f(N) = mN}, remembering that S = nZ. We know ` exists since S∩N is a subset of the
well-ordered set N. Thus f(k) = mk < ` for all k such that 0 ≤ k < N , and therefore since f is an order-preserving
bijection, f(N) = `. However, the inductive hypothesis implies that g, being an order-preserving bijection, must
also have that g(N) = `. Hence g and f are one in the same.

(b)

The fact that every element of S is a multiple of f(1) follows directory from Lemma 1.1, the fact that n generates
nZ, and the construction of f , namely f(1) = n.

(c)

Let G be a cyclic group with subgroup H and generator g. If H is trivially {1}, then we are done, as 1 generates
H.

So assume that H has at least two distinct elements. Define S = {n | gn ∈ H}. The set S then also has at least
two different elements. Now for n,m ∈ S we have that gn, gm ∈ H which implies that gngm = gn+m ∈ H as H is
a group. Hence n+m ∈ S implying the closure of S under addition. Also since H is a group, (gm)−1 = g−m ∈ H
informing us that n−m ∈ S. Hence S is closed under subtraction. In summary, S is a set with at least two different
elements which is closed under addition and subtraction.

Thus by parts (a) and (b) of this problem, we have a unique order-preserving map, f : N → S ∩ N, for which
every element of S is an integer multiple of f(1). In other words, for every gn ∈ H, there is some integer a such
that gn = gaf(1) =

(
gf(1)

)a
. Hence gf(1) generates H.
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(a)

Let a, b ∈ Z be nonzero, and S ⊂ Z be the set {ar + bs | r, s ∈ Z}. If a = b, then the existence of the greatest
common divisor of a, a is trivial since the a would be the integer such that any other integer which divides a also
divides a.

So let’s proceed assuming that a 6= b. With this, we know that S has at least two elements, thereby allowing
us to make use of the problem 1. So let fN → N ∩ S be the unique order-preserving bijection, and define c to be
f(1). So for any d that divides a and b, d will also divide every element of S. This will include c since part (b) of
problem 1 states that c generates all of S and c is therefore contained in S. So d divides c.

Relation of gcd(a, b) to S The greatest common divisor of a, b is the value c such that c generates S = 〈a, b〉.

(b)

Let a, b be relatively prime non-zero integers and c an integer such that a|bc. Let as+ cr ∈ 〈a, c〉 for some s, r ∈ Z.
Since a and b are relatively prime, their greatest common divisor is 1, meaning that 〈a, b〉 = 〈1〉 = Z. Therefore
r ∈ 〈a, b〉. However, for n,m ∈ Z such that an+bm = r, this implies that as+cr = as+c(an+bm) = as+can+cbm.
Thus a divides as+ cr, since a|bc, and therefore every element of 〈a, c〉, including a(0) + c(1) = c is divisible by a.

(c)

We will define a prime according to Jacobson [Jac09, pg. 22] as an integer p 6= 0,±1 with ±p and ±1 being its only
divisors.

Every nonzero integer can be decomposed into ±1pe1
1 · · · pe+m

m We will first prove this for positive integers,
then for negative ones.

As a base case we have that for 1 or any positive prime p, the decomposition is 1 and p, respectively. So let
n ∈ N be composite and assume that all natural numbers less than n can be decomposed as per above. Then we
can find positive integers q, r < n such that qr = n. By the inductive hypothesis, then q and r can be decomposed
into ± a product powers of primes. Hence so can n, namely the decomposition produced by the product of the
decomposition of q and r.

As for a negative integer, m, the above proof for decomposition of positive integers informs us that there is such
a decomposition for |m|, and thus simply negating the decomposition yields a decomposition for m.

The decomposition is unique. As a base case we have that for 1 or any positive prime p, the decomposition
1 and p, respectively, are unique. So let n ∈ N be composite and assume that all natural numbers less than n
can be uniquely decomposed. Let pe11 · · · peaa and qf11 · · · q

fb
b be decompositions of n. Therefore p1 must divide

qf11 · · · q
fb
b since both decompositions are equal, in other words, there is some qi equal to p1. Thus pe1−11 · · · peaa and

qf11 · · · q
fi−1
i · · · qfbb are equal, but these integers are less than n, which our inductive hypothesis tells us that their

prime decompositions are unique. Therefore their multiplication by p1 = qi will be unique decompositions of n.
As for a negative integer, m, the above proof for unique decomposition of positive integers informs us that there

is such a unique positive decomposition for |m|, and thus simply negating the it yields a unique decomposition for
m.1

1Inspiration for this proof drawn from [Jac09, pg. 22]
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Suppose that m,n are integers that are relatively prime. From problem two, we know that there exist integers u, v
such that um + vn = 1. From this we obtain that um + vn ≡ 1 mod n, but since vn is a multiple of n this yields
um ≡ 1 mod n. Similarly we obtain vn ≡ 1 mod m. These two equations in turn give us that for some integers a, b,

bum ≡ b mod n and avn ≡ a mod m (3.2)

As multiples of m and n, respectively, bum and avn have that

bum ≡ 0 mod m and avn ≡ 0 mod n

which when combined with Equation 3.2, yields

avn+ bum ≡ a mod m and avn+ bum ≡ b mod n

Thus the desired formula for c is c = avn+ bum

4

(a)

Let a ∈ N be a n+ 1 decimal digit number. Let the decimal digits of a be represented by d0, d1, . . . , dn where each
di is in {0, 1, . . . , 9} and d0 corresponds to the lowest magnitude digit, and dn, the highest. Then we have that

a =

n∑
i=0

di10i

In class we saw that the canonical addition and multiplication operations in Z/9Z are compatible with the addition
and multiplication operations of the integers. This yields to us

a ≡

(
n∑

i=0

di10i

)
mod 9 =

n∑
i=0

(di mod 9)
(
10i mod 9

)
=

n∑
i=0

(di mod 9) (10 mod 9) · · · (10 mod 9)︸ ︷︷ ︸
i times

however, 1 ≡ 10 mod 9, leaving us with

a ≡
n∑

i=0

(di mod 9) =

(
n∑

i=0

di

)
mod 9

again using the compatibility of addition in Z/9Z with integer addition.

(b)

Let a ∈ N be a n+ 1 decimal digit number. Let the decimal digits of a be represented by d0, d1, . . . , dn where each
di is in {0, 1, . . . , 9} and d0 corresponds to the lowest magnitude digit, and dn, the highest.

Formula for 11 We can see that 10 is a unit of Z/11Z with order 2 in (Z/11Z)
×

. Therefore 102i ≡ 10 mod 11
and 102i+1 ≡ 1 mod 11 for integer i. We can also say that di = 0 when i > n, and because of it, we can write

a =

n∑
i=0

di10i =

n∑
i=0

d2i102i +

n∑
i=0

d2i+1102i+1

which implies

a ≡

(
n∑

i=0

d2i102i +

n∑
i=0

d2i+1102i+1

)
mod 11 ≡

n∑
i=0

d2i
(
102i mod 11

)
+

n∑
i=0

d2i+1

(
102i+1 mod 11

)
≡ 10

n∑
i=0

d2i+

n∑
i=0

d2i+1
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Formula for 7 Similar to the above method for 11, 10 is a unit of Z/7Z with order 6 in (Z/7Z)
×

. Therefore

100 ≡ 1 mod 7

101 ≡ 3 mod 7

102 ≡ 2 mod 7

103 ≡ 6 mod 7

104 ≡ 4 mod 7

105 ≡ 5 mod 7

We can again also say that di = 0 when i > n, and because of it, we can write

a =

n∑
i=0

di10i =

n∑
i=0

d6i106i +

n∑
i=0

d6i+1106i+1 +

n∑
i=0

d6i+2106i+2 +

n∑
i=0

d6i+3106i+3 +

n∑
i=0

d6i+4106i+4 +

n∑
i=0

d6i+5106i+5

which results in the following after modding by 7

a =
n∑

i=0

d6i + 3

n∑
i=0

d6i+1 + 2

n∑
i=0

d6i+2 + 6

n∑
i=0

d6i+3 + 4

n∑
i=0

d6i+4 + 5

n∑
i=0

d6i+5

5

(a) Prove Euler’s totient function is multiplicative

First, let m and n be coprime integers. Then problem 1 informs use that there are intgers r, s such that mr+ns = 1
or in other words mr = n(−s) + 1, which implies mr ≡ 1 mod n. Hence m ∈ (Z/nZ)

×
.

Now let m ∈ (Z/nZ)
×

. Then there exists some integer r such that mr ≡ 1 mod (n). Then problem 1 implies
the existence of an s such that mr = ns+ 1, i.e. mr + n(−s) = 1. Hence gcd(m,n) = 1 and therefore m and n are
coprime.

Combining these two results implies that an integer m is coprime to an integer n if and only if m ∈ (Z/nZ)
×

.
This allots us the following equation

φ(n) =
∣∣∣(Z/nZ)

×
∣∣∣ (5.3)

The multiplicativity of φ According to [Cha13] the Chinese Remainder Theorem tells us that for an integer
n ≥ 2 with prime factorization n = pe11 · · · peaa , Z/nZ is isomorphic to (Z/pe11 Z) × · · · × (Z/peaa Z). This in turn
implies (Z/nZ)× is isomorphic to (Z/pe11 Z)×× · · · × (Z/peaa Z)×. Let m and n be coprime with prime factorizations

pe11 · · · peaa and qf11 · · · q
fb
b , respectively. Therefore the prime factors of their prime factorization have that pi 6= qj for

each possible i, j. Now according to equation 5.3, φ(mn) = |Z/mnZ|, and thus we have the following sequence of
equations.

φ(mn) =
∣∣∣(Z/pe11 Z)× × · · · × (Z/peaa Z)× × (Z/qf11 Z)× × · · · × (Z/qfbb Z)×

∣∣∣
=

∣∣∣(Z/pe11 Z)
× × · · · × (Z/peaa Z)

×
∣∣∣ ∣∣∣∣(Z/qf11 Z

)×
× · · · ×

(
Z/qfbb Z

)×∣∣∣∣
=

∣∣∣(Z/mZ)
×
∣∣∣ ∣∣∣(Z/nZ)

×
∣∣∣

= φ(m)φ(n)

(b)

Let’s first examine the value of φ(pe) for prime p and positive e (note negative e is pointless to consider as it isn’t
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an integer). The value of φ(pe) will be the number of integers between 1 and pe which are coprime to pe, but
the only such integers are the positive multiples of p less than or equal to pe. There are pe−1 of them, namely
p, 2p, 3p, . . . , (pe−1)p. Hence, because there are pe postive integers less than or equal to pe

φ(pe) = pe − pe−1 = pe−1(p− 1) (5.4)

Given Equation 5.4 and the fact that φ is multiplicative from the previous part of the problem, then for any n
with prime decomposition of pe11 p

e2
2 · · · pemm where each pi is distinct, we have the formula

φ(n) = φ(pe11 p
e2
2 · · · pemm ) = φ(pe11 )φ(pe22 ) · · ·φ(pemm ) = pe1−11 (p1 − 1)pe2−12 (p2 − 1) · · · pem−1m (pm − 1)
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