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Let p(x) = 23 — 2 — 1 € Q[z]

(a) Extra Credit: Show that p(x) is irreducible in Q[x]

(b)

(c)

Let T,, € Endg(V,,) be defined by
To(f(2) + p(2)"Qlz]) = z - f(z) + p(2)"Qlz] v f(z) € Qlx]
For n =1 The images of the basis elements in part (b) are

T(1+p@)Qlz]) = =+ p(2)Qlz]
T(z+p@)Q]) = 2+ p(x)Qlz]
T(2* +p(2)Qz]) = 2°+p(@)Qlz] = (z+1) +p(z)Q[z]

)

p(x)? = 2% —22% —22% + 2% + 22 4+ 1

and so the matrix representation is

For n = 2 Since

then the images of the basis elements in part (b) are

T(1+p)*Ql]) = =+ p(=)*Qlz]
T(z+p()°Qla]) = 2+ p(z)*Qlz]
T(a® +p(2)’Qla]) = 2°+ p(2)*Qla]
T(a® —2—1+p@)*Q]) = (z*—2°—2)+p()’Ql]
T(w(a® -2 —1) +p@)*Q]) = (&°—1°—2%) +p(=)°Qlz]
T(a*(2® =2 = 1) +p(2)°Qla]) = (2°—2" —2%) + p(2)’Q

1
1 1
1
1 1
1 1
1

with vertical and horizontal lines to better see the nicities of the matrix.

(d)
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For n =1 The characteristic polynomial for the matrix

from above is

det | A 1 —| 1 1 =x_-1-1
1 1

According to part (a), this polynomial is irreducible, so because the minimal polynomail divides the characteristic
polynomial, this polynomial is also the minimal polynomial.

For n = 2 The characteristic polynomial for the matrix

1
1 1
1
1 1
1 1
1
from above is
1 1
1 1 1
1 1
det | A 1 — 1 1
1 1 1
1 1

which is

AAAAN =1) = 1)) = (D=1 AN = 1) = D) (-1) (=) (-1)(A(N* = 1) = 1)
MO A=1D) = AN =A=1) =N =X1-1)
A= A=D1\ =A-1)
Again because neither of the two factors of the above product are reducible, then the minimal polynomial is simply

A —A—1

(e) Extra Credit: Minimal and Characteristic polynomial for T,

Continuing the pattern above, the characteristic polynomial for 7, will be
p(x)" = (¢ —x —1)"

and the minimal polynomial will be

plz)=a%—2—1
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(b) Extra Credit

3

For each n € N define an F-linear operator, 9™, on F[z] by

fla+t)=>Y o)

n>0

for all f(z) € Flx]. So for an arbitrary m-degree polynomial f(z) € F[z] defined as

S
i=0
we have, through use of the binomial formula, that
m m % i ) m 1 i .
fetrh =Y a@rni=>auY ()xt - Zzal( )xt
i=0 i—0 =0 M iz0j=0 M

Rearranging the indexing variables, we can morph the right-hand side of the above equation into
S ai( ot
§=0 i=j J
which in turn allows us to move the #/ outside the inner summation to obtain
m m Z )
faen =30 (Sa()e) o
j=0 \i=j J
which finally allows us to clearly see the coefficients of f(z 4 t) and therefore the formulation of dU)(f) to be
(i
oVl(f) = Za<> &' (3.1)
— J
i=j

(a) Show that 9! is given by the standard formula for -

Letting f(z) € F[x] be a polynomial of degree m, then the formula in equation 3.1, we have

8[1](f) = iai (j)xil = iaﬂxi*l
i i=1

=1

which is exactly the formula for f/(z).
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(b) Show that n!-9"(f) yields the “n-th derivative of f”

Letting f(z) € F[x] be a polynomial of degree m, then the formula in equation 3.1, we have

m

) i
n! E a; "
: n
=n
= n' E aiﬁxl_n
n!(i —n)!
i=n
= E a;———a'" "
; (i —n)!
=N

= Zaii(i —1)(i—2)---(i— (n+1))z""

n!-am(f)

which is exactly the formula for f"(x).

(c) Extra Credit

(a) Show that Endg,(p~"Z/Z) is naturally isomorphic to Z/p™Z

m

Since the ring p~™Z/Z is cyclically generated by p~™, each endomorphism is defined by it’s mapping of p—™. Since
each element of p~™Z/7Z is an integer multiple of p~™ then let’s denote each element of Endg,,(p~"Z/Z) by

Pn(p~™) = np=m

Given this notation, because each ¢,,, @, are ring homomorphisms, we are immediately afforded both ¢, = Vnm

and ¢, + Pm = Pntm.
With this, we will define ¢ : End(p~™Z/Z) — Z/p™Z by ¢(¢n) = Ti. Thus using the ring homomorphic

properties of ¢, and ¢, outlined above and the additive/multiplicative operations on /p™Z, we have

Hnom) = &(Pnm)

nm
= nm

= (on)d(m)

and

(725(9011 + Som) = ¢(§0n+m)
n+m

= ¢(§0n)¢(§0m)

and so ¢ is a ring homomorphism.

Now if ¢(¢n) = 0, then @, (p~™) = 0p—™ = 0, and so @, = po. With this we have the injectivity of ¢. Now
because End(p~™Z/7Z) and Z/p™Z have the same cardinality, then ¢ is bijective. Hence we have that End(p=™Z/Z)
is isomorphic to Z/p™Z.
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(b)

For referential reasons, we will number the property each element of Z, has
G = ap(modp"Z) YV m >n (4.2)
(b1) There exists a zero element The sequence of all zeros, denote it by (0), will be the zero element since:

(0) + (mn)n€N21 =(0+ xn)ﬂENzl = (zn + O)nENzl = (xn)nENzl +(0)

Addition is closed For each (z,)nen.,, (Yn)nens, € Zp their sum is in Z,, because of the closure of addition
on Z/p™Z and because

T + Ym = (z,, mod p"Z) + (y,, mod p"Z) = (x,, + yp) mod p"Z
for all m > n.
Additive inverses The sequence of negatives of the elements of a sequence is the additive inverse since
(Tn)neNs, + (=Tn)nens, = (Tn — Tn)nens, = (0) = (=T + Tn)nens, = (=Tn)nens, + (Tn)nens,
Addition is commutative by the following

(xn)nGNzl + (yn)n6N21 = (xn + yn)nGNzl = (yn + l’n)nENzl = (yn)nGNzl + (xn)nGNzl

which is due to the commutative addition of Z/p™Z for each n.

There exists a 1 element which is the sequence of all ones, which we will denote by (1). It is the multi-
plicative identity by
(U(mn)neNzl = (1xn)nEN21 = (xTLl)nENzl = (mn)nEN21(1)

Multiplication is closed since
TmYm = (¢, mod p"Z)(y, mod p"Z) = (zpy,) mod p"Z
forall m>n

Multiplication is associative by the following

xnyn)n€N>1 (zﬂ)n€N>1
(xnyn)zn)nel\bl

((xn)HGNzl(yn)TLGNzJ (Zn)n€N21 (
(
(zn, (ynzn))neN>1
(
(

xn)n€N>1 (ynzn)n€N>1
xn) ((yn)n€N>1(zn)ﬂ€N>1)

where we make use of associativity on Z/p"Z.

Multiplication distributes over addition by the following

(xn)neNzl (Yn + Zn)nENZ1
= (Tn(yn + zn))nEN21
(Tnyn + xnzn)neN21
= (xnyn)n€N>1 + (IWZH)HGNZI

= ((xn n€N>1 yn)n€N>1) + ((xn)nENzl(Zn)neNzl)

(Jjn)neNzl ((yn)nENzl + (ZH)TLENZ1)

where we make use of the distributive law on Z/p"Z.

Multiplication is commutative by the following

(xn)nGNZI(yn)nGN21 = (xnyn)nGNzl = (ynxn)nGNZI = (yn)RGNzl(ZEn)neNZl

in which we make use of the commutative property of multiplication on Z/p"Z.

Finally, given all the above properties, we have that Z, is a commutative ring.
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(b2)

(c)

Let my : Zy — Z/p"Z be the n-th component projection map. For m € Z/p"Z, define the sequence (zy,)n.,
by 2, := m mod p"Z for each n € N>;. Then we will have that m,((zn)n.,) = m(modp"Z) = m. Hence the
map 7, is surjective.

Through use of the additive and multiplicative definitions on both Z, and Z/p™Z, we obtain
7Tn((33n)N21 + (yn)N21) = mn((zn + yn)NZl) =Tpn+Yn =Tpn +Yn = Wn((l'n)Nzl) + Wvl((yn)Nzl)
and
Wn((xn)Nzl(yn)Nzl) = Wn((xnyn)Nzl) =Tnn = Tn(Un) = Wn((xn)Nzl)ﬂn((yn)Nzl)
which reveals that m, is a ring homomorphism in addition to being surjective.

Let (z,,) € Kerm,. Then x,, = 0 mod p" implying that z,, is a multiple of p". Furthermore given equation

4.2 we have that
Zy = 0 mod p” (4.3)

for all m > n. Hence each z,, is a multiple of p™ for m > n. Likewise, equation 4.2 gives us that z,, = x; mod p*
for all k < n, so since x, is a multiple of p™ it is inherently a multiple of p* for k& < n. Thus we have that
each x5, = 0 mod p* which also implies that

zr = 0 mod p" (4.4)

Hence the fact that z, = 0 mod p™ combined with equations 4.3 and 4.4 implies that (z,) € p” - Z,. So we
have that Kerm, C p" - Z,.

Now if (z,,) € p"Z,, then x,, would be a multiple of p”, i.e. z,, = 0 mod p™. So the image of (x,) under m,
will therefore be 0 € Z/p"Z. Hence p"Z, C Kerm,.

With the above two results we conclude that Ker 7, = p"Z,.

Extra Credit

(d)

Extra Credit

(e)

Extra Credit

(f)

Extra Credit

(8)

Extra Credit

5

Extra Credit

Rush 6



	
	Extra Credit: Show that p(x) is irreducible in Q[x]
	
	
	
	Extra Credit: Minimal and Characteristic polynomial for Tn

	
	
	Extra Credit

	
	Show that [1] is given by the standard formula for ddx
	Show that n![n](f) yields the ``n-th derivative of f''
	Extra Credit

	
	Show that `39`42`"613A``45`47`"603AEndgrp(p-mZ/Z) is naturally isomorphic to Z/pmZ
	
	Extra Credit
	Extra Credit
	Extra Credit
	Extra Credit
	Extra Credit

	Extra Credit

