
Math 502: Abstract Algebra
Homework 8

Lawrence Tyler Rush
<me@tylerlogic.com>

January 5, 2014

http://coursework.tylerlogic.com/courses/upenn/math502/homework08



1

Let p(x) = x3 − x− 1 ∈ Q[x]

(a) Extra Credit: Show that p(x) is irreducible in Q[x]

(b)

(c)

Let Tn ∈ EndQ(Vn) be defined by

Tn(f(x) + p(x)nQ[x]) = x · f(x) + p(x)nQ[x] ∀ f(x) ∈ Q[x]

For n = 1 The images of the basis elements in part (b) are

T (1 + p(x)Q[x]) = x+ p(x)Q[x]

T (x+ p(x)Q[x]) = x2 + p(x)Q[x]

T (x2 + p(x)Q[x]) = x3 + p(x)Q[x] = (x+ 1) + p(x)Q[x]

and so the matrix representation is  1
1 1

1


For n = 2 Since

p(x)2 = x6 − 2x4 − 2x3 + x2 + 2x+ 1

then the images of the basis elements in part (b) are

T (1 + p(x)2Q[x]) = x+ p(x)2Q[x]

T (x+ p(x)2Q[x]) = x2 + p(x)2Q[x]

T (x2 + p(x)2Q[x]) = x3 + p(x)2Q[x]

T (x3 − x− 1 + p(x)2Q[x]) = (x4 − x2 − x) + p(x)2Q[x]

T (x(x3 − x− 1) + p(x)2Q[x]) = (x5 − x3 − x2) + p(x)2Q[x]

T (x2(x3 − x− 1) + p(x)2Q[x]) = (x6 − x4 − x3) + p(x)2Q[x] = (x4 + x3 − x2 − 2x− 1) + p(x)Q[x]

which results in the following matrix representation
1

1 1
1

1 1
1 1

1


with vertical and horizontal lines to better see the nicities of the matrix.

(d)
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For n = 1 The characteristic polynomial for the matrix 1
1 1

1


from above is

det

λ
 1

1
1

−
 1

1 1
1

 = λ3 − λ− 1

According to part (a), this polynomial is irreducible, so because the minimal polynomail divides the characteristic
polynomial, this polynomial is also the minimal polynomial.

For n = 2 The characteristic polynomial for the matrix
1

1 1
1

1 1
1 1

1


from above is

det

λ


1
1

1
1

1
1

−


1
1 1

1
1 1

1 1
1




which is

λ
(
λ(λ(λ(λ2 − 1)− 1))− (−1)(−1)(λ(λ2 − 1)− 1)

)
(−1)(−1)(−1)(λ(λ2 − 1)− 1)

λ3(λ3 − λ− 1)− λ(λ3 − λ− 1)− (λ3 − λ− 1)

(λ3 − λ− 1)(λ3 − λ− 1)

Again because neither of the two factors of the above product are reducible, then the minimal polynomial is simply
λ3 − λ− 1

(e) Extra Credit: Minimal and Characteristic polynomial for Tn

Continuing the pattern above, the characteristic polynomial for Tn will be

p(x)n = (x3 − x− 1)n

and the minimal polynomial will be
p(x) = x3 − x− 1

2

(a)
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(b) Extra Credit

3

For each n ∈ N define an F -linear operator, ∂[n], on F [x] by

f(x+ t) =
∑
n≥0

∂[n](f) · tn

for all f(x) ∈ F [x]. So for an arbitrary m-degree polynomial f(x) ∈ F [x] defined as

m∑
i=0

aix
i

we have, through use of the binomial formula, that

f(x+ t) =

m∑
i=0

ai(x+ t)i =

m∑
i=0

ai

i∑
j=0

(
i

j

)
xi−jtj =

m∑
i=0

i∑
j=0

ai

(
i

j

)
xi−jtj

Rearranging the indexing variables, we can morph the right-hand side of the above equation into

m∑
j=0

m∑
i=j

ai

(
i

j

)
xi−jtj

which in turn allows us to move the tj outside the inner summation to obtain

f(x+ t) =

m∑
j=0

 m∑
i=j

ai

(
i

j

)
xi−j

 tj

which finally allows us to clearly see the coefficients of f(x+ t) and therefore the formulation of ∂[j](f) to be

∂[j](f) =

m∑
i=j

ai

(
i

j

)
xi−j (3.1)

(a) Show that ∂[1] is given by the standard formula for d
dx

Letting f(x) ∈ F [x] be a polynomial of degree m, then the formula in equation 3.1, we have

∂[1](f) =

m∑
i=1

ai

(
i

1

)
xi−1 =

m∑
i=1

aiix
i−1

which is exactly the formula for f ′(x).
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(b) Show that n! · ∂[n](f) yields the “n-th derivative of f”

Letting f(x) ∈ F [x] be a polynomial of degree m, then the formula in equation 3.1, we have

n! · ∂[n](f) = n!

m∑
i=n

ai

(
i

n

)
xi−n

= n!

m∑
i=n

ai
i!

n!(i− n)!
xi−n

=

m∑
i=n

ai
i!

(i− n)!
xi−n

=

m∑
i=n

aii(i− 1)(i− 2) · · · (i− (n+ 1))xi−n

which is exactly the formula for fn(x).

(c) Extra Credit

4

(a) Show that Endgrp(p
−mZ/Z) is naturally isomorphic to Z/pmZ

Since the ring p−mZ/Z is cyclically generated by p−m, each endomorphism is defined by it’s mapping of p−m. Since
each element of p−mZ/Z is an integer multiple of p−m then let’s denote each element of Endgrp(p−mZ/Z) by

ϕn(p−m) := np−m

Given this notation, because each ϕn, ϕm are ring homomorphisms, we are immediately afforded both ϕnϕm = ϕnm

and ϕn + ϕm = ϕn+m.
With this, we will define φ : End(p−mZ/Z) → Z/pmZ by φ(ϕn) = n. Thus using the ring homomorphic

properties of ϕn and ϕm outlined above and the additive/multiplicative operations on /pmZ, we have

φ(ϕnϕm) = φ(ϕnm)

= nm

= nm

= φ(ϕn)φ(ϕm)

and

φ(ϕn + ϕm) = φ(ϕn+m)

= n+m

= nm

= φ(ϕn)φ(ϕm)

and so φ is a ring homomorphism.
Now if φ(ϕn) = 0, then ϕn(p−m) = 0p−m = 0, and so ϕn = ϕ0. With this we have the injectivity of φ. Now

because End(p−mZ/Z) and Z/pmZ have the same cardinality, then φ is bijective. Hence we have that End(p−mZ/Z)
is isomorphic to Z/pmZ.
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(b)

For referential reasons, we will number the property each element of Zp has

am ≡ an(modpnZ) ∀ m ≥ n (4.2)

(b1) There exists a zero element The sequence of all zeros, denote it by (0), will be the zero element since:

(0) + (xn)n∈N≥1
= (0 + xn)n∈N≥1

= (xn + 0)n∈N≥1
= (xn)n∈N≥1

+ (0)

Addition is closed For each (xn)n∈N≥1
, (yn)n∈N≥1

∈ Zp their sum is in Zp because of the closure of addition
on Z/pnZ and because

xm + ym ≡ (xn mod pnZ) + (yn mod pnZ) ≡ (xn + yn) mod pnZ

for all m ≥ n.

Additive inverses The sequence of negatives of the elements of a sequence is the additive inverse since

(xn)n∈N≥1
+ (−xn)n∈N≥1

= (xn − xn)n∈N≥1
= (0) = (−xn + xn)n∈N≥1

= (−xn)n∈N≥1
+ (xn)n∈N≥1

Addition is commutative by the following

(xn)n∈N≥1
+ (yn)n∈N≥1

= (xn + yn)n∈N≥1
= (yn + xn)n∈N≥1

= (yn)n∈N≥1
+ (xn)n∈N≥1

which is due to the commutative addition of Z/pnZ for each n.

There exists a 1 element which is the sequence of all ones, which we will denote by (1). It is the multi-
plicative identity by

(1)(xn)n∈N≥1
= (1xn)n∈N≥1

= (xn1)n∈N≥1
= (xn)n∈N≥1

(1)

Multiplication is closed since

xmym ≡ (xn mod pnZ)(yn mod pnZ) ≡ (xnyn) mod pnZ

for all m ≥ n
Multiplication is associative by the following(

(xn)n∈N≥1
(yn)n∈N≥1

)
(zn)n∈N≥1

= (xnyn)n∈N≥1
(zn)n∈N≥1

= ((xnyn)zn)n∈N≥1

= (xn(ynzn))n∈N≥1

= (xn)n∈N≥1
(ynzn)n∈N≥1

= (xn)n∈N≥1

(
(yn)n∈N≥1

(zn)n∈N≥1

)
where we make use of associativity on Z/pnZ.

Multiplication distributes over addition by the following

(xn)n∈N≥1

(
(yn)n∈N≥1

+ (zn)n∈N≥1

)
= (xn)n∈N≥1

(yn + zn)n∈N≥1

= (xn(yn + zn))n∈N≥1

= (xnyn + xnzn)n∈N≥1

= (xnyn)n∈N≥1
+ (xnzn)n∈N≥1

=
(
(xn)n∈N≥1

(yn)n∈N≥1

)
+
(
(xn)n∈N≥1

(zn)n∈N≥1

)
where we make use of the distributive law on Z/pnZ.

Multiplication is commutative by the following

(xn)n∈N≥1
(yn)n∈N≥1

= (xnyn)n∈N≥1
= (ynxn)n∈N≥1

= (yn)n∈N≥1
(xn)n∈N≥1

in which we make use of the commutative property of multiplication on Z/pnZ.

Finally, given all the above properties, we have that Zp is a commutative ring.
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(b2) Let πn : Zp → Z/pnZ be the n-th component projection map. For m ∈ Z/pnZ, define the sequence (xn)N≥1

by xn := m mod pnZ for each n ∈ N≥1. Then we will have that πn((xn)N≥1
) = m(modpnZ) = m. Hence the

map πn is surjective.

Through use of the additive and multiplicative definitions on both Zp and Z/pnZ, we obtain

πn((xn)N≥1
+ (yn)N≥1

) = πn((xn + yn)N≥1
) = xn + yn = xn + yn = πn((xn)N≥1

) + πn((yn)N≥1
)

and
πn((xn)N≥1

(yn)N≥1
) = πn((xnyn)N≥1

) = xnyn = xn(yn) = πn((xn)N≥1
)πn((yn)N≥1

)

which reveals that πn is a ring homomorphism in addition to being surjective.

(b3) Let (xm) ∈ Kerπn. Then xn ≡ 0 mod pn implying that xn is a multiple of pn. Furthermore given equation
4.2 we have that

xm ≡ 0 mod pn (4.3)

for allm ≥ n. Hence each xm is a multiple of pn form ≥ n. Likewise, equation 4.2 gives us that xn ≡ xk mod pk

for all k < n, so since xn is a multiple of pn it is inherently a multiple of pk for k < n. Thus we have that
each xk ≡ 0 mod pk which also implies that

xk ≡ 0 mod pn (4.4)

Hence the fact that xn ≡ 0 mod pn combined with equations 4.3 and 4.4 implies that (xn) ∈ pn · Zp. So we
have that Kerπn ⊂ pn · Zp.

Now if (xn) ∈ pnZp, then xn would be a multiple of pn, i.e. xn ≡ 0 mod pn. So the image of (xn) under πn
will therefore be 0 ∈ Z/pnZ. Hence pnZp ⊂ Kerπn.

With the above two results we conclude that Kerπn = pnZp.

(c) Extra Credit

(d) Extra Credit

(e) Extra Credit

(f) Extra Credit

(g) Extra Credit

5 Extra Credit
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