Math 502: Abstract Algebra Homework 9

Lawrence Tyler Rush <me@tylerlogic.com>

January 5, 2014 http://coursework.tylerlogic.com/courses/upenn/math502/homework09 1

(b) Extra Credit

$\mathbf{2}$

(a) Via Zorn's Lemma, prove that a nonzero $v \in V$ must be contained in some basis of V

Fix some nonzero $v \in V$ and define \mathcal{L} to be the family of subsets of V defined by

 $\mathcal{L} = \{ S \subseteq V \mid S \text{ is linearly independent and } v \in S \}$

Then \mathcal{L} is a poset regarding what it means to be a subset. Let $C = \{S_{\alpha}\}$ be a chain in \mathcal{L} . Because each S_{α} is linearly independent, then C must have a maximal element in \mathcal{L} since V is a vector space and a basis in a vector space is a maximal linearly independent set. Thus by Zorn's Lemma, \mathcal{L} must also have a maximal element. Such an element, by definition, is a basis of V.

(b)

For later contradiction, assume that j is not injective. Then there exist two distinct $v_1, v_2 \in V$ with $j(v_1) = j(v_2)$, or in other words $j(v_1)(\lambda) = j(v_2)(\lambda)$ for all $\lambda \in V^{\vee}$. This implies that

$$\lambda(v_1) = \lambda(v_2) \tag{2.1}$$

for all $\lambda \in V^{\vee}$.

However, let's let \mathscr{B} be a basis containing v_1 but not containing v_2 , and define $\gamma \in V^{\vee}$ to be the map

 $v\mapsto a$

where a is the coordinate for v_1 when v is written in the basis \mathscr{B} . With this we have that $\gamma(v_1) = 1$ and $\gamma(v_2) = a$ with $a \neq 1$ since v_1 and v_2 were assumed distinct. Hence $\gamma(v_1) \neq \gamma(v_2)$, which contradicts equation 2.1. Therefore j must be injective.

j is *F*-linear Let $v, u \in V, a, b \in F$ and $\lambda \in V^{\vee}$. Then we have the following

$$j(av_1 + bv_2)(\lambda) = \lambda(av_1 + bv_2) = a\lambda(v_1) + b\lambda(v_2) = aj(v_1)(\lambda) + bj(v_2)(\lambda) = (aj(v_1) + bj(v_2))(\lambda)$$

by the linearity of λ . Hence j is F-linear.

(c)

(d)

(a) Show that (x, y) in $\mathbb{C}[x, y]$ is not principle.

For later contradiction, assume that (x, y) is principle. Then there is some element of $f \in C[x, y]$ that generates the ideal (x, y). Since $x \in (x, y)$ and $y \in (x, y)$, then f must divide both x and y. However, this is a contradiction with the fact that there is no element of C[x, y] that divides both x and y.

(b) Extra Credit

(c) Extra Credit

4

Let $T \in \operatorname{End}_F(V)$ for a finite dimensional vector space V over a field F. Denote the dimension of V by n.

(a) Show that if T is diagonalizable, then T is semisimple.

Assume that T is diagonalizable. Then it's characteristic polynomial is

$$char(T) = (\lambda - a_1)(\lambda - a_2) \cdots (\lambda - a_n)$$
(4.2)

where a_1, \ldots, a_n are the diagonal entries of T as represented in the basis of its eigenvectors. Because the minimal polynomial divides the characteristic polynomial, according to the Caley-Hamilton theorem, then equation 4.2 indicates that the minimal polynomial is

 $(\lambda - b_1)(\lambda - b_2) \cdots (\lambda - b_m)$

where $m \leq n$ and b_1, \ldots, b_m are the distinct elements of $\{a_1, \ldots, a_n\}$. Hence T is semisimple.

(b)

(c)

(d) Extra Credit

(e) Extra Credit

$\mathbf{5}$

Let R be a commutative ring.

(a) Show that R[x] is an integral domain iff R is an integral domain.

Let R[x] be an integral domain. Let $a, b \in R$ be elements with ab = 0. Then a and b are also elements of R[x] as constant polynomials. Hence either a or b must be zero as R[x] has no zero divisors.

Conversely assume that R is an integral domain. ????

(b)	
(c)	
(d)	
(e)	Extra Credit
(f)	Extra Credit
(g)	Extra Credit