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Some Language. Similar to Dummit and Foote [DF04, p. 365], for left R-module N , right R-module M and
abelian group L, we will call a map α : M ×N → L R-balanced if it satisfies all three of

α(m1 +m2, n) = α(m1, n) + α(m2, n)

α(m,n1 + n2) = α(m,n1) + α(m,n2)

α(mr, n) = α(m, rn)

for m,m1,m2 ∈M , n, n1, n2 ∈ N , and r ∈ R.

1

Let V and W be modules over a commutative ring R. Then according to the definition of tensor products, we have
the existence of balanced maps α : V ×W → V ⊗RW and α′ : W × V → W ⊗R V . Since V ×W and W × V are
isomorphic, we have an isomorphism i : V ×W → W × V , and so setting β = α′ ◦ i we have that β is a balanced
map from V ×W to W ⊗R V . Hence, as W ⊗R V is an abelian group (it’s an R-module), the universal property
of the tensor product gives us that there exists a unique homomorphism s : V ⊗R W → W ⊗R V such that the
diagram

V ×W V ⊗RW

W ⊗R V
β

α

s

commutes. Furthermore, since α(v, w) = v ⊗ w and β(v, w) = w ⊗ v, then s(v ⊗ w) = w ⊗ v for each v ∈ V and
w ∈W .

Finally, since R is commutative, the above argument symmetrically holds when V and W are swapped as each
is a left and right R-module. This implies the existence of a homomorphism s′ : W ⊗R V → V ⊗R W such that
s′(w ⊗ v) = v ⊗ w. Hence, s above is invertible and therefore an isomorphism. 1

2

(a)

Since under standard scalar multiplication, Rn is a left F -module. Furthermore for a ∈ F , r ∈ Rn and A ∈Mn(F )
we have that a(rA) = (ar)A by standard linear algebra rules. Hence Rn is an F -Mn(F )-bimodule. This then gives
Rn ⊗F Cn structure as a right F -module, but since F is a field, then Rn ⊗F Cn is a F -vector space.

(b)

First let us define ϕ : Rn×Cn → F by ϕ(r, c) = rc for each r ∈ Rn and c ∈ Cn. This is essentially the dot product,
and so we know it to be bilinear, but just for the sake of completeness:

ϕ(rA, c) = (rA)c = r(Ac) = ϕ(r,Ac)

ϕ(r1 + r2, c) = (r1 + r2)c = r1c+ r2c = ϕ(r1, c) + ϕ(r2, c)

ϕ(r, c1 + c2) = r(c1 + c2) = rc1 + rc2 = ϕ(r, c1) + ϕ(r, c2)

This then implies that ϕ is Mn(F )-balanced. Hence the universal property of tensor products allots us the existence
of a unique φ : Rn ⊗Mn(F ) Cn → F such that ϕ = φ ◦ i where i is the normal “inclusion” map. With this we have
two helpful lemmas.

1Inspiration for this proof drawn from [Lan02, p. 605]
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Lemma 2.1. Let φ be defined as it is above. For all r ∈ Rn and c ∈ Cn, if φ(r⊗c) = 0 then r⊗c = 0 ∈ Rn⊗Mn(F )Cn.

Proof. Let the initial conditions of the Lemma’s statement stand. Denote the components of r and c by r1, . . . , rn
and c1, . . . , cn, respectively. Since φ(r⊗ c) = rc = 0 then for each i, ri = 0 or ci = 0. Let i1, . . . , ik be the indices of
the components of r which are zero. Therefore cj = 0 for j 6∈ {i1, . . . , ik} Let A ∈Mn(R) be the matrix with ones
along the diagonal, except in rows i1, . . . , ik which shall be completely zero. Then we have that

r ⊗ c = rA⊗ c = r ⊗Ac = r ⊗ 0 = 0

Lemma 2.2. For every element x ∈ Rn ⊗Mn(F ) Cn there exist elements r ∈ Rn and c ∈ Cn such that x = r ⊗ c.

Proof. As Rn ⊗Mn(F ) Cn is made up of finite linear combinations of elements of the form r ⊗ c, it suffices to only
show that any two such elements can be combined into one. So let r1⊗c1+· · ·+r2⊗c2 be arbitrary in Rn⊗Mn(F )Cn.
Then by denoting the individual components of r1 by r11, . . . , r1n and likewise for r2, we can define A ∈Mn(F ) to
be

A =

 r−121 r11
. . .

r−12n r1n


Note that for clarity, we neglect to address the case of a component of r2 being zero, in which case we would set
the corresponding diagonal entry in A to zero, and the remainder of the proof holds. Therefore we have

r1 ⊗ c1 + r2 ⊗ c2 = r2A⊗ c1 + r2 ⊗ c2 = r2 ⊗Ac1 + r2 ⊗ c2 = r2 ⊗ (Ac1 + c2)

Now let r1 ⊗ c1 + · · · + rn ⊗ cn in Rn ⊗Mn(F ) Cn be such that φ(r1 ⊗ c1 + · · · + rn ⊗ cn) = 0. By Lemma 2.2
there are r ∈ Rn and c ∈ Cn such that r1 ⊗ c1 + · · ·+ rn ⊗ cn = r ⊗ c. By Lemma 2.1 r1 ⊗ c1 + · · ·+ rn ⊗ cn = 0
since φ(r1 ⊗ c1 + · · ·+ rn ⊗ cn) = φ(r ⊗ c) = 0.

Hence φ is an injective linear transformation with a 1-dimensional vector space as a codomain. Then, since φ is
not the zero map, e.g.

φ((1, 0, . . . , 0)⊗ (1, 0, . . . , 0)t) = 1 6= 0

Rn ⊗Mn(F ) Cn must also be a one dimensional vector space. Furthermore, in light of Lemma 2.2, φ is our explicit
isomorphism we need, mapping r ⊗ c to rc.

3

Let F be a field and U , V , and W be vectors spaces over F . Furthermore let u, u1, u2 ∈ U , v, v1, v2 ∈ V , and
w,w1, w2 ∈W .

(a)

Let β : U × V ×W → U ⊗F (V ⊗F W ) be the map defined by β(u, v, w) = u⊗ (v⊗w). By properties of the tensor
product, we have

β(au+ u′, v, w) = (au+ u′)⊗ (v ⊗ w)

= ((au)⊗ (v ⊗ w)) + (u′ ⊗ (v ⊗ w))

= a (u⊗ (v ⊗ w)) + β(u′, v, w)

= aβ(u, v, w) + β(u′, v, w)
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β(u, av + v′, w) = u⊗ ((av + v′)⊗ w)

= u⊗ ((av ⊗ w) + v′ ⊗ w)

= u⊗ (a(v ⊗ w) + v′ ⊗ w)

= u⊗ (a(v ⊗ w)) + u⊗ (v′ ⊗ w)

= a(u⊗ (v ⊗ w)) + β(u, v′, w)

= aβ(u, v, w) + β(u, v′, w)

and

β(u, av + v′, w) = u⊗ (v ⊗ (aw + w′))

= u⊗ ((v ⊗ aw) + v ⊗ w′)
= u⊗ (a(v ⊗ w) + v ⊗ w′)
= u⊗ (a(v ⊗ w)) + u⊗ (v ⊗ w′))
= a(u⊗ (v ⊗ w)) + β(u, v, w′)

= aβ(u, v, w) + β(u, v, w′)

(b)

Let T : U × V ×W → X be a F -trilinear map where X is some F -vector space. Then for a fixed u ∈ U , we can
define Tu : V ×W → X by Tu(v, w) = T (u, v, w). Since T is F -trilinear, then Tu is F -balanced. Thus, since X is an
abelian group, the universal property of tensor products admits a unique group homomorphism ϕu : V ⊗W → X
such that

Tu = ϕu ◦ i (3.1)

where i : V ×W → V ⊗W is the “inclusion” map (v, w) 7→ v ⊗ w; i.e. the diagram

V ×W V ⊗W

X
Tu

i

ϕu

commutes.
Next, we will use these ϕu maps to obtain the f for which we’re looking. So define φ : U × (V ⊗W ) → X by

φ(u, v, w) = ϕu(v ⊗ w). Then equation 3.1 gives us

φ(u1 + u2, v ⊗ w) = ϕu1+u2
(v ⊗ w)

= Tu1+u2
(v, w)

= T (u1 + u2, v, w)

= T (u1, v, w) + T (u2, v, w)

= Tu1
(v, w) + Tu2

(v, w)

= ϕu1
(v ⊗ w) + ϕu2

(v ⊗ w)

= φ(u1, v ⊗ w) + φ(u2, v ⊗ w)

through the use of the F -trilinearity of T . We also have

φ(au, v ⊗ w) = ϕau(v ⊗ w)

= Tau(v, w)

= T (au, v, w)

= T (u, av, w)

= Tu(av, w)
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= ϕu(av ⊗ w)

= φu(a(v ⊗ w))

by the F -trilinearity of T , properties of ⊗, and equation 3.1. Finally, the homomorphic properties of each ϕu give
us

φ(u, v1 ⊗ w1 + v2 ⊗ w2) = ϕu(v1 ⊗ w1 + v2 ⊗ w2)

= ϕu(v1 ⊗ w1) + ϕu(v2 ⊗ w2)

= φ(u, v1 ⊗ w1) + φ(u, v2 ⊗ w2)

Given these three equations above, we conclude that φ is F -balanced. Hence the universal property of tensor
products yields a unique group homomorphism f : U ⊗ (V ⊗W )→ X (i.e. a linear map) such that φ = f ◦ i′ is the
inclusion map (u, v⊗w) 7→ (u⊗ (v⊗w)). So by defining ψ : U × (V ×W )→ U × (V ⊗W ) as ψ(u, v, w) = (u, v⊗w),
we have φ ◦ ψ = f ◦ i′ ◦ ψ. However, since

φ ◦ e(u, v, w) = φ(u, v ⊗ w) = ϕu(v ⊗ w) = Tu(v, w) = T (u, v, w)

and
i′ ◦ ψ(u, v, w) = i′(u, v ⊗ w) = u⊗ (v ⊗ w)

the equation φ ◦ ψ = f ◦ i′ ◦ ψ implies T = f ◦ β.

(c)

Due to the symmetry of the situation, it is a laborious plug-and-chug operation to prove that

Given a F -trilinear map T : U × V ×W → X where X is some F -vector space, there exists a unique
F -linear map f : (U ⊗ V )⊗W → X such that T = f ◦ β

given that we already have the above proof in our hands. So we omit the proof and simply admit the above statement
as fact. As there is already grounds for multi-linear universal property of tensor products [Lan02, p. 603], we will
overload “the universal property of tensors products” by referring to the above statement, the statement proven in
the previous part of this problem, and the original two-dimensional property as “the universal property of tensors
products”.

So by part (a) of this problem, we have that β : U × V × W → U ⊗ (V ⊗ W ) is F -trilinear. The same
argument holds, by shuffling around parentheses, for β′ : U × V × W → (U ⊗ V ) ⊗ W , implying that it is F -
trilinear. Therefore, the universal property of tensor products implies that there exist unique group homomorphisms
α′ : (U ⊗ V ) ⊗W → U ⊗ (V ⊗W ) and α : U ⊗ (V ⊗W ) → (U ⊗ V ) ⊗W such that α′((u ⊗ v) ⊗ w) = β(u, v, w)
and α(u⊗ (v ⊗ w)) = β′(u, v, w), i.e. the following diagrams commute

U × V ×W U ⊗ (V ⊗W )

(U ⊗ V )⊗W
β′

β

α

U × V ×W (U ⊗ V )⊗W

U ⊗ (V ⊗W )

β

β′

α′

But the uniqueness implies that α′ and α are inverses of each. Thus α is the desired isomophism between U⊗(V ⊗W )
and (U ⊗ V )⊗W .
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4

(a)

Let’s start off by defining Φϕφ : U × V → F for ϕ ∈ U∨ and φ ∈ V ∨ by Φϕφ(u, v) = ϕ(u)φ(v). This map is
F -bilinear by the following three equations.

Φϕφ(u1 + u2, v) = ϕ(u1 + u2)φ(v)

= ϕ(u1)φ(v) + ϕ(u2)φ(v)

= Φϕφ(u1, v) + Φϕφ(u2, v)

Φϕφ(u, v1 + v2) = ϕ(u)φ(v1 + v2)

= ϕ(u)φ(v1) + ϕ(u)φ(v2)

= Φϕφ(u, v1) + Φϕφ(u, v2)

Φϕφ(au, v) = ϕ(au)φ(v)

= rϕ(u)φ(v)

= ϕ(u)φ(av)

= Φϕφ(u, av)

Thus the universal property of tensor products gives us a unique linear map Φϕφ : U ⊗ V → F through which Φ
factors. We use this in the following argument.

Now define f : U∨ × V ∨ → (U ⊗ V )∨ by f(ϕ, φ) = Φϕφ. We yet again have an F -bilinear map here by the
following equations, using what we have shown above.

f(ϕ1 + ϕ2, φ)(u, v) = Φ(ϕ1+ϕ2)φ(u, v)

= ϕ1(u)φ(v) + ϕ2(u)φ(v)

= Φϕ1φ(u, v) + Φϕ2φ(u, v)

= f(ϕ1, φ)(u, v) + f(ϕ2, φ)(u, v)

f(ϕ, φ1 + φ2)(u, v) = Φϕ(φ1+φ2)(u, v)

= ϕ(u)φ1(v) + ϕ(u)φ2(v)

= Φϕφ1(u, v) + Φϕφ2(u, v)

= f(ϕ, φ1)(u, v) + f(ϕ, φ2)(u, v)

f(aϕ, φ)(u, v) = Φ(aϕ)φ(u, v)

= (aϕ)(u)φ(v)

= a(ϕ(u)φ(v))

= ϕ(u)(aφ)(v)

= Φϕ(aφ)(u, v)

= f(ϕ, aφ)(u, v)

Thus the universal property of tensor products gives us a unique linear map f : U∨ ⊗ V ∨ → (U ⊗ V )∨ through
which f factors.

Now we define g : (U ⊗ V )∨ → U∨ ⊗ V ∨ (this will be our inverse of f) to be the map

α 7→ (u 7→ α(u, 1))⊗ (v 7→ α(1, v))

where α : U × V → F is the map associated with α according to the universal property of tensor products. By the
following we see that g is the inverse of f

g(f(ϕ⊗ φ)) = g(Φϕφ)

= (u 7→ Φϕφ(u, 1))⊗ (v 7→ Φϕφ(1, v))

= (u 7→ ϕ(u))⊗ (v 7→ φ(v))
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= ϕ⊗ φ

and so we have that f is the isomorphism which we desire.

(b) Extra Credit
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