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Let R be a commutative ring and G be a finite group.

(a) Show that R ®z Z[G] has a structure as a ring

The tensor product R ®z Z[G] is already an abelian group, so we need to find a multiplication operation - and show
that (R ®z Z[G], -, 1r ® 1z/g)) is a monoid as well as the distributive law holds.

Constructing Multiplication We first recognize that multiplication in a ring R’ is some associative bilinear
operation from R’ x R’ — R’. It’s bilinear because of the distributive law, and associative so that the demands of
the aforementioned monoid are met.

Thus because R and Z[G] are both rings, there exist such associative, bilinear maps mpg : R x R — R and
myq) : Z|G]x Z|G] — Z[G]. But then the universal property of tensor products yields mz : R®z R — R and mz[q :
Z|G]®7 Z|G] — Z[G] through which mpg and mgzjq) factor, respectively. Thus we can combine these two to form the
linear map Mg @Mz[q] : (R®z R) ®z (Z|G] ®z Z[G]) — R®z Z[G]. Because of the commutativity and associativity
of the tensor product, there exists an isomorphism « : (R ®z Z[G]) ® (R ®z Z|G]) = (R ®z R) ®z (Z|G] @z Z|G))
such that a((r® z) @ (s®vy)) = (r®s) @ (x ®y) for all r,s € R and z,y € Z[G]. Now the composition
Mmr @ Mzjg) o« : (R®z Z[G]) ® (R ®z Z[G]) — R ®z Z[G] is a linear map, which, via the universal property of
tensor products, yields a bilinear map m : (R ®z Z[G]) x (R ®z Z[G]) — R ®z Z|G] through which mzr ® mzg] o «
factors. The map m is our desired multiplication.

Associativity of Multiplication Because m is bilinear, it satisfies the distributive laws and thus we need only
show that m is associative. Also because m is bilinear, for arbitrary >, ® z;,3_;s; ® y; € R ®z Z|[G]

m Zri®mi, ZSj@?Jj ZZZm(riQ@xi,sj@yj)
i j i g

which implies that we need only determine that m(r @z, m(s®y,t®z)) = m(m(roz,s®y),t®z) for allr,s,t € R
and x,y,z € Z[G]. So finally, through the use of the associativity of mpg and myg the following sequence of
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equations shows m to be associative. For clarity we set ¢ = g ® zg]
m<r®x,m(s®y,t®z)> = <poo¢<(7"®x)®<P004((3®3/)®(t®2)))
- (poa<(7"®l‘)®¥7((5®t)®(y®z))>
- (poa<(r®x)®(nm(8®t)®mZ[G](y®Z))>
- ¢oa<(r®x)®(mR(5at)®mZ[G](yaz))>

- <( r @ mg(s,t )®(x®mz[c:](yaz))>

= mg(r®@mg(s,t)) @ mzg(z © mzg(y, 2))
= mg(r,mg(s,t)) ® mziq (v, mzia)(y, 2))

= mg(mg(r,s),t) @ mziq(mze)(z,y), 2)

= mr(mg(r,s) @t) @ Mz (mzic)(z,y) ® z)
= <p< (mgr(r, s) ® )@ (mgq)(z,y) ® z))

= pouw mR r,Ss ®mz[ ](I7y))®(t®2)>

= poal (Mr(r®s) ®mz[g](x®y))®(t®2)>

o

Il
AS)
Q

poa((r®ua) (s®y))®(t®z)>

(
(
- (poa<(p r®s) $®y))®(t®z))
(
(e

= poa|lm(r®u, s®y)®(t®z)>
= m(m(r@x 5®yY), t®z>

Thus R ®z Z|G] has a ring structure.

(b) Are R ®7; Z|G] and R[G] isomorphic?

Because R is a free R-module of rank one, Z[G] is a free Z-module of rank #G, and R[G] is a free R-module of rank
#G, then we know immediately that R ®z Z[G] and R[G| are isomorphic as R-modules, since their ranks are the
same. Furthermore, any homomorphism which takes basis elements to distinct basis elements will be an R-linear
isomorphism. Thus if we can find such an R-module isomorphism and go on to show that it preserves multiplication
between elements of the domain and codomain, then it will also be a ring isomorphism. We endeavor to find such
an isomorphism.

So define o : R x Z|G] — R[G] to be the map (r,z) — rz. Through use of the properties of R|G], for all
r,r1,72 € R, x,21,22 € R[G], and n € Z

alry +ro,x) = (r1 +ro)x = ra + rex = a(r, z) + a(rg, x)

a(r,zy + x2) =r(x1 + 22) = rr1 +r2s = a(r,z1) + a(r, z2)

a(nr,z) = (nr)z = signum(n) (r + - - - + r) & = signum(n) re + - - - + re = signum(n)r (x + - - - + x) = r(nz) = ar, nz)
—_——— ——— %/_/
|n| times [n| times |n| times

by which « is Z-bilinear. Therefore the universal properties of tensor products yields @ : RQ Z[G] — R[G] such that
«a = @o1t where 7 is the inclusion map. Moreover, @ is an isomorphism of modules due to it’s mapping basis elements
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to distinct basis elements: @(1 ® [g]) = «(1,[g]) = [g] for each g € G. It remains to be shown that @ preserves
the operation of multiplication. The following yields that fact for arbitrary elements ) . r; ® z; and ) ;$j ®y; in
R ® Z|G]

«a (Zﬁ@l‘i) Zsj@)yj [ ZZ(Tiéi)xi)(sj@yj)

a ZZ(HSJ' ® T;yj)
T J
DY alris; © wyy)

i g
ZZa(risj,xiyj)
sz:risziyj

i g

(Z rm) ; S5

Il

Q|

3

®

&

~_

Q|
o

®
&

Hence, R ®z Z|G] and R[G] are isomorphic rings.

2

Let M and N be two left R-modules over a non-commutative ring R. Define M ©®r N to be the quotient of M ®z N
by it’s submodule which is generated by all elements of the form (r-m)®n —m ® (r-n) where m € M, n € N,
and r € R. We will refer to this submodule as S.

(a)

Define a: M x N — M ®r N to be the compositions of the canonical map i1 : M x N — M ®z N and the quotient
map iz : M ®z N — M ®Or N.

Let @ be an R-module and v : M x N — @ be a R-bilinear map. Therefore @ is an abelian group and
v is also a Z-bilinear map. Thus the universal property of tensor products gives us the existence of a unique
7" € Homg,, (M ®z N, Q) such that v =~ 0i;.

Now since S is generated by elements of the form (r-m)®n—m® (r-n) where m € M, n € N, and r € R and

V((rm)y@n—me(rn) = A((rm)@n) ' (me (rn)
= (- m,n) = (m,r )

= ry(m,n) —ry(m,n)

0
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then S < kerv’, by which the universal property of quotient modules yields a unique map 8 € Homg(M ©Or N, Q)
such that v/ = S oiy. Hence y =+ 0iy = foizoi; = foa.

Finally, the existence and uniqueness of both 4" and 3, demand that the map 8 — /3 o « is bijective.

(b) What is M ®r N when M, N are R-modules of rank one

Let M and N each be left R-modules of rank 1 with generators m and n, respectively. Then for the R-module
M ®r N and for an arbitrary element Zl m; ©O©n; € M ©r N

E m; ©®©n; = E rim ® s;n
i i
E Sirim®n
i

(o

Z rim © s;n
Z m ® ris;n

i
= Y ((rsymn)

i

(Z risi> (mon)

%

[
3
©

while similarly

g

Either one of these implies that M ®g N is isomorphic as a R-module to a subring of R, not necessarily proper.
However, combining the two results brings

(Z siri> (mon) = (Z risi) (mon)

to light, from which we deduce that
M oOGr N = R/S

where S is the subring of R generated by elements of the form rs — sr. Note that since R is non-commutative, then
S will not simply be zero.

(c) Give an R such that M ®g N is zero for M, N in (b)

Begin with a non-commutative ring, say Ms(R), and let M = N = R. Set R to be the ring generated by elements
of the form AB — BA for A, B € M(R). Then certainly, given the previous part of this problem, the R-module
M ®r N will be zero because it will be isomorphic to #/r in this case.
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3

Let G be a finite group with subgroup H. Let F be a field.

()

Because F is a field, then the group rings F[G x G] and F[G] are vector spaces over F with dimension (#G)? and
#G, respectively. Hence F[G] ®r F[G] is also a vector space of dimension (#G)?2. So F|G x G] and F|G] ®F F|[G]
are isomorphic. Furthermore, because {[(z,y)]|z,y € G} is a basis for F[G x G] and {[z] ® [y]|z,y € G} is a basis
for F|G] ®p F[G], then the map from F[G x G] to F|G] @ F[G] defined by [(z,y)] — [z] ® [y] is an isomorphism,
and uniquely so.

(b)

Again, because F is a field, F[G] and F[G] ®F F|[G] are vector spaces over F'. Furthermore, because {[z]|x € G}
and {[z] ® [y]|x,y € G} are bases for F[G] and F|G]®F F[G], respectively, then defining « : F[G] — F[G] ®F F[G]
by [z] — [z] ® [] makes « the unique injective linear homomorphism from F[G] to F[G]®p F[G]. In order for a to
be an F-algebra homomorphism, it remains only to prove that a([x][y]) = a([z])a([y]) for all [z], [y] € F[G]. The
following yields that property:

a([2]ly]) = a(lxy])

= [zl ®[zy

T
—
5=
<
Yo
5 8
=& <

(c)

Since V and W are left F[G]-modules, then they a free modules each of rank #G. Since the tensor product of free
modules is also a free module, then V @ W is also a left R[G]-module, however, it has rank (#G)2.

Fix an ¢ € G. Given that py(z) € GL(V) and pw(x) € GL(W) then we can define pygw : G — GL(V) by
pvew(z) = pv(z) ® pw(x)

So set A to be the matrix representation of py (z) in the basis {[¢g]lg € G}. Similarly, set B to be the matrix
representation of pw (x) in the same basis. Also set C to be the matrix representation of pygw (x) in the basis
{lgf @1lg e G} U{1®[g]lg € G}. Then

anB Cl12B ce a1nB
ang a22B

C= .
anlB an2B annB
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where n = #G and (a;;) = A. Therefore we finally arrive at

Trr(pvew(z) = Trr(C)

= TI‘F (zn: a“B>
i=1

= TI‘F(B) iaii
i=1

 Tep(B)Tre(4)
= TI‘F(A) TTF(B)
= TI‘F([)V(x)) TI'F(/)W(‘T))

(d) Extra Credit

(a) Show that there is a natural ring isomorphism between Z[z, y] and Z[x| ®z Z|x]

The rings Z[z,y] and Z[x] ®z Z[x] are free Z-modules with bases {z"|n € Z>o} U {y"|n € Z>o} and {z" @ 1|n €
Zso} U{l® z™|n € Z>o}, respectively. These two bases have the same cardinality, so any homomorphism that
maps the elements of one basis to distinct elements of the other will be a Z-module isomorphism. So once we find
such a module isomorphism, we need only show that it preserves the multiplication operation in order to obtain a
ring isomorphism.

Define a : Z[z] x Z[z] — Z[z,y] by (f(x),g(z)) — f(x)g(y). Then for all f, f1, f2, 9,91, 92 € Z[z] and n € Z we
have the following through heavy use of ring properties of Z|x, y].

a(fi(z) + f2(z), 9(z)) = (fi(z)+ f2(x))g(y)
= N(@)gy) + fa(2)9(y)

(fi(x), 9(x)) + a(f2(2), g(x))
a(f(z), g1(x) + g2(2)) = f(2)(91(y) + 92(y))

f(@)g1(y) + f(x)g2(y)

= a(f(x)a(y) +alf ( )92(y))
a(nf(z),g(z)) = signum(n) (f(z)+ -+ f(z)) 9(y)
|n| times

= signum(n) f(x)g(y) + -+ f(x)g(y)

[n| times
= signum(n)f(z) (g(y) + -+ g(v))

|n| times

I
Q

= a(f(z),ng(z))
which implies that « is Z-bilinear. Thus the universal property of tensor products gives us @ : Z[z] ® Z[z] — Z[z, y]

such that o = @ o ¢ where 4 is the inclusion map. Now @(2" ® 1) = a(z™,1) = 2™ and @(1 ® z"™) = «(1,z") = y",
making @ a Z-module isomorphism. We now only to multiplication to be preserved by @. This is shown by the
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following for arbitrary elements }_, f; ® gi, >, f; ® g; € Z[z] @z Z[z]

() (o)

@ (Z Z(fi ®9i)(f; ® gj))

a (Z > _(fif;@ gign)
> alfifi ®g.9;)

Z XJ: a(fif 9i95)

Z Z filx (v)g;(y)

<Z fi(w)gi(y)> (EJ: fi(@)g; (y))
<Z (J%%))( amygj))
< f1®gz>( af;@g])
= a(;ﬁ@gi Q(ij(@gj)

Hence Z[z] ®7 Z[z] is naturally isomorphic to Z[z, y].

(b)

Let ¢ : Z[z] — Z[z] ®7 Z]z] be a ring homomorphism such that ¢(z) = z® 1+ 1 ® =z for the polynomial z € Z[z].
Therefore, for n € Z, c(z") = (c(x))™. Since {1,z,22,...} is a basis for Z[z], then ¢(z) = * ® 1 + 1 ® z completely
defines c¢. Hence, ¢ is unique.

(c)

First note that for n € Z we have a formula for c(2™)

n n

@) =(z@l+loa)" =Y (2’) (z®1)"(1® z) zn: (?) @ e)lod)=Y (’Z) 2" @

i=0 i=0 =0

Note that the last line could also be written as > ;" (") ' ® x”_i. We will make use of both. Then, for any
f(@) =€ Zlz], c(f(x) = flz@1+1@z) =3, an> iy (})z" ' @2’ when f(z) =3, an,z". Given these results,
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we obtain the following

ac(l@cjoc(f) = al@c(flr@1+101)))

7?77? Seems like there should be a way to manipulate the coefficients above so that (¢ ® 1) o ¢ results, but I can’t
figure out how.

(d)

(e)

(f)

(g) Extra Credit

(h) Extra Credit
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