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1

Let R be a commutative ring and G be a finite group.

(a) Show that R ⊗Z Z[G] has a structure as a ring

The tensor product R⊗Z Z[G] is already an abelian group, so we need to find a multiplication operation · and show
that (R⊗Z Z[G], ·, 1R ⊗ 1Z[G]) is a monoid as well as the distributive law holds.

Constructing Multiplication We first recognize that multiplication in a ring R′ is some associative bilinear
operation from R′ ×R′ → R′. It’s bilinear because of the distributive law, and associative so that the demands of
the aforementioned monoid are met.

Thus because R and Z[G] are both rings, there exist such associative, bilinear maps mR : R × R → R and
mZ[G] : Z[G]×Z[G]→ Z[G]. But then the universal property of tensor products yields mR : R⊗ZR→ R and mZ[G] :
Z[G]⊗ZZ[G]→ Z[G] through which mR and mZ[G] factor, respectively. Thus we can combine these two to form the
linear map mR⊗mZ[G] : (R⊗ZR)⊗Z (Z[G]⊗Z Z[G])→ R⊗Z Z[G]. Because of the commutativity and associativity
of the tensor product, there exists an isomorphism α : (R ⊗Z Z[G]) ⊗ (R ⊗Z Z[G]) → (R ⊗Z R) ⊗Z (Z[G] ⊗Z Z[G])
such that α((r ⊗ x) ⊗ (s ⊗ y)) = (r ⊗ s) ⊗ (x ⊗ y) for all r, s ∈ R and x, y ∈ Z[G]. Now the composition
mR ⊗mZ[G] ◦ α : (R ⊗Z Z[G]) ⊗ (R ⊗Z Z[G]) → R ⊗Z Z[G] is a linear map, which, via the universal property of
tensor products, yields a bilinear map m : (R⊗Z Z[G])× (R⊗Z Z[G])→ R⊗Z Z[G] through which mR ⊗mZ[G] ◦ α
factors. The map m is our desired multiplication.

Associativity of Multiplication Because m is bilinear, it satisfies the distributive laws and thus we need only
show that m is associative. Also because m is bilinear, for arbitrary

∑
i ri ⊗ xi,

∑
j sj ⊗ yj ∈ R⊗Z Z[G]

m

∑
i

ri ⊗ xi ,
∑
j

sj ⊗ yj

 =
∑
i

∑
j

m (ri ⊗ xi, sj ⊗ yj)

which implies that we need only determine that m(r⊗x,m(s⊗y, t⊗z)) = m(m(r⊗x, s⊗y), t⊗z) for all r, s, t ∈ R
and x, y, z ∈ Z[G]. So finally, through the use of the associativity of mR and mZ[G] the following sequence of
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equations shows m to be associative. For clarity we set ϕ = mR ⊗mZ[G]

m

(
r ⊗ x,m

(
s⊗ y, t⊗ z

))
= ϕ ◦ α

((
r ⊗ x

)
⊗ ϕ ◦ α

(
(s⊗ y)⊗ (t⊗ z)

))
= ϕ ◦ α

((
r ⊗ x

)
⊗ ϕ

(
(s⊗ t)⊗ (y ⊗ z)

))
= ϕ ◦ α

((
r ⊗ x

)
⊗
(
mR(s⊗ t)⊗mZ[G](y ⊗ z)

))
= ϕ ◦ α

((
r ⊗ x

)
⊗
(
mR(s, t)⊗mZ[G](y, z)

))
= ϕ

((
r ⊗mR(s, t)

)
⊗
(
x⊗mZ[G](y, z)

))
= mR

(
r ⊗mR(s, t)

)
⊗mZ[G]

(
x⊗mZ[G](y, z)

)
= mR(r,mR(s, t))⊗mZ[G](x,mZ[G](y, z))

= mR(mR(r, s), t)⊗mZ[G](mZ[G](x, y), z)

= mR(mR(r, s)⊗ t)⊗mZ[G](mZ[G](x, y)⊗ z)

= ϕ

((
mR(r, s)⊗ t

)
⊗
(
mZ[G](x, y)⊗ z

))
= ϕ ◦ α

((
mR(r, s)⊗mZ[G](x, y)

)
⊗
(
t⊗ z

))
= ϕ ◦ α

((
mR(r ⊗ s)⊗mZ[G](x⊗ y)

)
⊗
(
t⊗ z

))
= ϕ ◦ α

(
ϕ
(
(r ⊗ s)⊗ (x⊗ y)

)
⊗
(
t⊗ z

))
= ϕ ◦ α

(
ϕ ◦ α

(
(r ⊗ x)⊗ (s⊗ y)

)
⊗
(
t⊗ z

))
= ϕ ◦ α

(
m
(
r ⊗ x, s⊗ y

)
⊗
(
t⊗ z

))
= m

(
m
(
r ⊗ x, s⊗ y

)
, t⊗ z

)

Thus R⊗Z Z[G] has a ring structure.

(b) Are R ⊗Z Z[G] and R[G] isomorphic?

Because R is a free R-module of rank one, Z[G] is a free Z-module of rank #G, and R[G] is a free R-module of rank
#G, then we know immediately that R ⊗Z Z[G] and R[G] are isomorphic as R-modules, since their ranks are the
same. Furthermore, any homomorphism which takes basis elements to distinct basis elements will be an R-linear
isomorphism. Thus if we can find such an R-module isomorphism and go on to show that it preserves multiplication
between elements of the domain and codomain, then it will also be a ring isomorphism. We endeavor to find such
an isomorphism.

So define α : R × Z[G] → R[G] to be the map (r, x) 7→ rx. Through use of the properties of R[G], for all
r, r1, r2 ∈ R, x, x1, x2 ∈ R[G], and n ∈ Z

α(r1 + r2, x) = (r1 + r2)x = r1x+ r2x = α(r1, x) + α(r2, x)

α(r, x1 + x2) = r(x1 + x2) = rx1 + rx2 = α(r, x1) + α(r, x2)

α(nr, x) = (nr)x = signum(n) (r + · · ·+ r)︸ ︷︷ ︸
|n| times

x = signum(n) rx+ · · ·+ rx︸ ︷︷ ︸
|n| times

= signum(n)r (x+ · · ·+ x)︸ ︷︷ ︸
|n| times

= r(nx) = α(r, nx)

by which α is Z-bilinear. Therefore the universal properties of tensor products yields α : R⊗Z[G]→ R[G] such that
α = α◦i where i is the inclusion map. Moreover, α is an isomorphism of modules due to it’s mapping basis elements
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to distinct basis elements: α(1 ⊗ [g]) = α(1, [g]) = [g] for each g ∈ G. It remains to be shown that α preserves
the operation of multiplication. The following yields that fact for arbitrary elements

∑
i ri ⊗ xi and

∑
j sj ⊗ yj in

R⊗ Z[G]

α

(∑
i

ri ⊗ xi

)∑
j

sj ⊗ yj

 = α

∑
i

∑
j

(ri ⊗ xi)(sj ⊗ yj)


= α

∑
i

∑
j

(risj ⊗ xiyj)


=

∑
i

∑
j

α(risj ⊗ xiyj)

=
∑
i

∑
j

α(risj , xiyj)

=
∑
i

∑
j

risjxiyj

=

(∑
i

rixi

)∑
j

sjyj


=

(∑
i

α(ri, xi)

)∑
j

α(sj , yj)


=

(∑
i

α(ri ⊗ xi)

)∑
j

α(sj ⊗ yj)


= α

(∑
i

ri ⊗ xi

)
α

∑
j

sj ⊗ yj


Hence, R⊗Z Z[G] and R[G] are isomorphic rings.

2

Let M and N be two left R-modules over a non-commutative ring R. Define M �RN to be the quotient of M ⊗ZN
by it’s submodule which is generated by all elements of the form (r ·m) ⊗ n −m ⊗ (r · n) where m ∈ M , n ∈ N ,
and r ∈ R. We will refer to this submodule as S.

(a)

Define α : M ×N →M �RN to be the compositions of the canonical map i1 : M ×N →M ⊗ZN and the quotient
map i2 : M ⊗Z N →M �R N .

Let Q be an R-module and γ : M × N → Q be a R-bilinear map. Therefore Q is an abelian group and
γ is also a Z-bilinear map. Thus the universal property of tensor products gives us the existence of a unique
γ′ ∈ Homgrp(M ⊗Z N,Q) such that γ = γ′ ◦ i1.

Now since S is generated by elements of the form (r ·m)⊗ n−m⊗ (r ·n) where m ∈M , n ∈ N , and r ∈ R and

γ′((r ·m)⊗ n−m⊗ (r · n)) = γ′((r ·m)⊗ n)− γ′(m⊗ (r · n))

= γ(r ·m,n)− γ(m, r · n)

= rγ(m,n)− rγ(m,n)

= 0
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then S ≤ ker γ′, by which the universal property of quotient modules yields a unique map β ∈ HomR(M �R N,Q)
such that γ′ = β ◦ i2. Hence γ = γ′ ◦ i2 = β ◦ i2 ◦ i1 = β ◦ α.

Finally, the existence and uniqueness of both γ′ and β, demand that the map β 7→ β ◦ α is bijective.

(b) What is M �R N when M , N are R-modules of rank one

Let M and N each be left R-modules of rank 1 with generators m and n, respectively. Then for the R-module
M �R N and for an arbitrary element

∑
imi � ni ∈M �R N∑

i

mi � ni =
∑
i

rim� sin

=
∑
i

sirim� n

=

(∑
i

siri

)
(m� n)

while similarly ∑
i

mi � ni =
∑
i

rim� sin

=
∑
i

m� risin

=
∑
i

((risi)m� n)

=

(∑
i

risi

)
(m� n)

Either one of these implies that M �R N is isomorphic as a R-module to a subring of R, not necessarily proper.
However, combining the two results brings(∑

i

siri

)
(m� n) =

(∑
i

risi

)
(m� n)

to light, from which we deduce that
M �R N ∼= R/S

where S is the subring of R generated by elements of the form rs− sr. Note that since R is non-commutative, then
S will not simply be zero.

(c) Give an R such that M �R N is zero for M,N in (b)

Begin with a non-commutative ring, say M2(R), and let M = N = R. Set R to be the ring generated by elements
of the form AB − BA for A,B ∈ M2(R). Then certainly, given the previous part of this problem, the R-module
M �R N will be zero because it will be isomorphic to R/R in this case.
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3

Let G be a finite group with subgroup H. Let F be a field.

(a)

Because F is a field, then the group rings F [G×G] and F [G] are vector spaces over F with dimension (#G)2 and
#G, respectively. Hence F [G]⊗F F [G] is also a vector space of dimension (#G)2. So F [G×G] and F [G]⊗F F [G]
are isomorphic. Furthermore, because {[(x, y)]|x, y ∈ G} is a basis for F [G×G] and {[x]⊗ [y]|x, y ∈ G} is a basis
for F [G]⊗F F [G], then the map from F [G×G] to F [G]⊗F F [G] defined by [(x, y)] 7→ [x]⊗ [y] is an isomorphism,
and uniquely so.

(b)

Again, because F is a field, F [G] and F [G] ⊗F F [G] are vector spaces over F . Furthermore, because {[x]|x ∈ G}
and {[x]⊗ [y]|x, y ∈ G} are bases for F [G] and F [G]⊗F F [G], respectively, then defining α : F [G]→ F [G]⊗F F [G]
by [x] 7→ [x]⊗ [x] makes α the unique injective linear homomorphism from F [G] to F [G]⊗F F [G]. In order for α to
be an F -algebra homomorphism, it remains only to prove that α([x][y]) = α([x])α([y]) for all [x], [y] ∈ F [G]. The
following yields that property:

α([x][y]) = α([xy])

= [xy]⊗ [xy]

= [x][y]⊗ [x][y]

= ([x]⊗ [x])([y]⊗ [y])

= α([x])α([y])

(c)

Since V and W are left F [G]-modules, then they a free modules each of rank #G. Since the tensor product of free
modules is also a free module, then V ⊗F W is also a left R[G]-module, however, it has rank (#G)2.

Fix an x ∈ G. Given that ρV (x) ∈ GL(V ) and ρW (x) ∈ GL(W ) then we can define ρV⊗W : G → GL(V ) by
ρV⊗W (x) = ρV (x)⊗ ρW (x)

So set A to be the matrix representation of ρV (x) in the basis {[g]|g ∈ G}. Similarly, set B to be the matrix
representation of ρW (x) in the same basis. Also set C to be the matrix representation of ρV⊗W (x) in the basis
{[g]⊗ 1|g ∈ G} ∪ {1⊗ [g]|g ∈ G}. Then

C =


a11B a12B · · · a1nB
a21B a22B

...
. . .

an1B an2B annB
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where n = #G and (aij) = A. Therefore we finally arrive at

TrF (ρV⊗W (x)) = TrF (C)

= TrF

(
n∑

i=1

aiiB

)

=

n∑
i=1

aii TrF (B)

= TrF (B)

n∑
i=1

aii

= TrF (B) TrF (A)

= TrF (A) TrF (B)

= TrF (ρV (x)) TrF (ρW (x))

(d) Extra Credit

4

(a) Show that there is a natural ring isomorphism between Z[x, y] and Z[x] ⊗Z Z[x]

The rings Z[x, y] and Z[x] ⊗Z Z[x] are free Z-modules with bases {xn|n ∈ Z≥0} ∪ {yn|n ∈ Z≥0} and {xn ⊗ 1|n ∈
Z≥0} ∪ {1 ⊗ xn|n ∈ Z≥0}, respectively. These two bases have the same cardinality, so any homomorphism that
maps the elements of one basis to distinct elements of the other will be a Z-module isomorphism. So once we find
such a module isomorphism, we need only show that it preserves the multiplication operation in order to obtain a
ring isomorphism.

Define α : Z[x]× Z[x]→ Z[x, y] by
(
f(x), g(x)

)
7→ f(x)g(y). Then for all f, f1, f2, g, g1, g2 ∈ Z[x] and n ∈ Z we

have the following through heavy use of ring properties of Z[x, y].

α(f1(x) + f2(x), g(x)) = (f1(x) + f2(x))g(y)

= f1(x)g(y) + f2(x)g(y)

= α(f1(x), g(x)) + α(f2(x), g(x))

α(f(x), g1(x) + g2(x)) = f(x)(g1(y) + g2(y))

= f(x)g1(y) + f(x)g2(y)

= α(f(x)g1(y)) + α(f(x)g2(y))

α(nf(x), g(x)) = signum(n) (f(x) + · · ·+ f(x))︸ ︷︷ ︸
|n| times

g(y)

= signum(n) f(x)g(y) + · · ·+ f(x)g(y)︸ ︷︷ ︸
|n| times

= signum(n)f(x) (g(y) + · · ·+ g(y))︸ ︷︷ ︸
|n| times

= α(f(x), ng(x))

which implies that α is Z-bilinear. Thus the universal property of tensor products gives us α : Z[x]⊗Z[x]→ Z[x, y]
such that α = α ◦ i where i is the inclusion map. Now α(xn ⊗ 1) = α(xn, 1) = xn and α(1⊗ xn) = α(1, xn) = yn,
making α a Z-module isomorphism. We now only to multiplication to be preserved by α. This is shown by the
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following for arbitrary elements
∑

i fi ⊗ gi,
∑

j fj ⊗ gj ∈ Z[x]⊗Z Z[x]

α

(∑
i

fi ⊗ gi

)∑
j

fj ⊗ gj

 = α

∑
i

∑
j

(fi ⊗ gi)(fj ⊗ gj)


= α

∑
i

∑
j

(fifj ⊗ gigj)


=

∑
i

∑
j

α(fifj ⊗ gigj)

=
∑
i

∑
j

α(fifj , gigj)

=
∑
i

∑
j

fi(x)fj(x)gi(y)gj(y)

=

(∑
i

fi(x)gi(y)

)∑
j

fj(x)gj(y)


=

(∑
i

α(fi, gi)

)∑
j

α(fj , gj)


=

(∑
i

α(fi ⊗ gi)

)∑
j

α(fj ⊗ gj)


= α

(∑
i

fi ⊗ gi

)
α

∑
j

fj ⊗ gj


Hence Z[x]⊗Z Z[x] is naturally isomorphic to Z[x, y].

(b)

Let c : Z[x] → Z[x] ⊗Z Z[x] be a ring homomorphism such that c(x) = x ⊗ 1 + 1 ⊗ x for the polynomial x ∈ Z[x].
Therefore, for n ∈ Z, c(xn) = (c(x))n. Since {1, x, x2, . . .} is a basis for Z[x], then c(x) = x⊗ 1 + 1⊗ x completely
defines c. Hence, c is unique.

(c)

First note that for n ∈ Z we have a formula for c(xn)

c(xn) = (x⊗ 1 + 1⊗ x)n =

n∑
i=0

(
n

i

)
(x⊗ 1)n−i(1⊗ x)i =

n∑
i=0

(
n

i

)
(xn−i ⊗ 1)(1⊗ xi) =

n∑
i=0

(
n

i

)
xn−i ⊗ xi

Note that the last line could also be written as
∑n

i=0

(
n
i

)
xi ⊗ xn−i. We will make use of both. Then, for any

f(x) =∈ Z[x], c(f(x)) = f(x⊗ 1 + 1⊗ x) =
∑

n an
∑n

i=0

(
n
i

)
xn−i ⊗ xi when f(x) =

∑
n anx

n. Given these results,
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we obtain the following

α ◦ (1⊗ c) ◦ c(f) = α(1⊗ c(f(x⊗ 1 + 1⊗ x)))

= α

(
1⊗ c

(∑
n

an

n∑
i=0

(
n

i

)
xn−i ⊗ xi

))

= α

(
1⊗ c

(∑
n

n∑
i=0

(
an

(
n

i

)
xn−i

)
⊗ xi

))

= α

(∑
n

n∑
i=0

(
an

(
n

i

)
xn−i

)
⊗ c

(
xi
))

= α

(∑
n

n∑
i=0

(
an

(
n

i

)
xn−i

)
⊗

(
i∑

k=0

(
i

k

)
xi−k ⊗ xk

))

= α

(∑
n

n∑
i=0

i∑
k=0

an

(
n

i

)(
i

k

)(
xn−i ⊗

(
xi−k ⊗ xk

)))

=
∑
n

n∑
i=0

i∑
k=0

an

(
n

i

)(
i

k

)((
xn−i ⊗ xi−k

)
⊗ xk

)

???? Seems like there should be a way to manipulate the coefficients above so that (c ⊗ 1) ◦ c results, but I can’t
figure out how.

(d)

(e)

(f)

(g) Extra Credit

(h) Extra Credit
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