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1

Define D(F ) ∈ Z[x1, . . . , xn] by

D(F ) =
∑

1≤i<j≤n

(xi − xj)2 (1.1)

(a)

Existence Given equation 1.1, D(F ) can alternatively be specified as

D(F ) =
∑

i,j∈{1,...,n}, i<j

(xi − xj)2

Because any σ ∈ Sn is bijective and because (xi − xj)2 = ((−1)(xj − xi))2 = (−1)2(xj − xi)2 = (xj − xi)2, then∑
i,j∈{1,...,n}, i<j

(xσ(i) − xσ(j))2 =
∑

i,j∈{1,...,n}, i<j

(xi − xj)2 = D(F )

In other words, D(F ) is symmetric. Thus there indeed exists a polynomial d ∈ Z[x1, . . . , xn] such that d(s1, . . . , sn) =
D(F ) since every symmetric polynomial in Z[x1, . . . , xn] is contained in Z[s1, . . . , sn].

Uniqueness There cannot exist two distinct d1, d2 ∈ Z[x1, . . . , xn] such that d1(s1, . . . , sn) = d2(s1, . . . , sn) =
D(F ) because their existence would contradict the algebraic independence of s1, . . . , sn [Lan02, p. 192] since it
would imply d = d1 − d2 has d(s1, . . . , sn) = 0.

(b)

Degree n = 2 To find an explicit formula for disc(f) where f(t) is a monic polynomial of degree two, we need
to find d(z1, z2) ∈ Z[z1, z2] such that d(s1, s2) = (x1 − x2)2. Because of the existence/uniqueness proven above, we
can find such a polynomial and there will be only one. So because s1 = x1 + x2, s2 = x1x2 for n = 2 and because

(x1 − x2)2 = x21 − 2x1x2 + x22 = (x21 + 2x1x2 + x22)− 4x1x2 = (x1 + x2)2 − 4x1x2

then we can deduce that d(z1, z2) = z21 − 4z2. Hence for any f(t) = t2 + at+ b

disc(f) = d(−a, b) = a2 − 4b

Degree n = 3 To find an explicit formula for disc(f) where f(t) is a monic polynomial of degree three, we need
to find d(z1, z2, z3) ∈ Z[z1, z2, z3] such that d(s1, s2, s3) = (x1 − x2)2(x1 − x3)2(x2 − x3)2. Again, because of the
existence/uniqueness proven above, we can find such a polynomial and there will be only one.

We first notice that d(s1, s2, s3) will be a homogeneous polynomial of degree six in x1, x2, x3. Therefore, since
s1 = x1 + x2 + x3, s2 = x1x2 + x1x3 + x2x3, and s3 = x1x2x3,

d(s1, s2, s3) = α1s
2
3 + α2s3s2s1 + α3s3s

3
1 + α4s

3
2 + α5s

2
2s

2
1 + α6s2s

4
1 + α7s

6
1

for some integers α1, α2, α3, α4, α5, α6, α7. We will find these values by analyzing the following expansion

(x1 − x2)2(x1 − x3)2(x2 − x3)2 = x41x
2
2 − 2x31x

3
2 + x21x

4
2 − 2x41x2x3 + 2x31x

2
2x3

+ 2x21x
3
2x3 − 2x1x

4
2x3 + x41x

2
3 + 2x31x2x

2
3 − 6x21x

2
2x

2
3

+ 2x1x
3
2x

2
3 + x42x

2
3 − 2x31x

3
3 + 2x21x2x

3
3 + 2x1x

2
2x

3
3

− 2x32x
3
3 + x21x

4
3 − 2x1x2x

4
3 + x22x

4
3

(1.2)
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From this equation, it is immediately apparent that α6 = α7 = 0 since s2s
4
1 and s61 would produce monomials

containing x1 raised to a degree higher than 4, but there is no such monomial in the polynomial of equation 1.2.
Now, given the expansions

s23 = x21x
2
2x

2
3

s3s2s1 = x31x
2
2x3 + x21x

3
2x3 + x31x2x

2
3 + 3x21x

2
2x

2
3 + x1x

3
2x

2
3 + x21x2x

3
3 + x1x

2
2x

3
3

s3s
3
1 = x41x2x3 + 3x31x

2
2x3 + 3x21x

3
2x3 + x1x

4
2x3 + 3x31x2x

2
3 + 6x21x

2
2x

2
3 + 3x1x

3
2x

2
3 + 3x21x2x

3
3

+3x1x
2
2x

3
3 + x1x2x

4
3

s32 = x31x
3
2 + 3x31x

2
2x3 + 3x21x

3
2x3 + 3x31x2x

2
3 + 6x21x

2
2x

2
3 + 3x1x

3
2x

2
3 + x31x

3
3 + 3x21x2x

3
3

+3x1x
2
2x

3
3 + x32x

3
3

s22s
2
1 = x41x

2
2 + 2x31x

3
2 + x21x

4
2 + 2x41x2x3 + 8x31x

2
2x3 + 8x21x

3
2x3 + 2x1x

4
2x3 + x41x

2
3 + 8x31x2x

2
3

+15x21x
2
2x

2
3 + 8x1x

3
2x

2
3 + x42x

2
3 + 2x31x

3
3 + 8x21x2x

3
3 + 8x1x

2
2x

3
3 + 2x32x

3
3 + x21x

4
3

+2x1x2x
4
3 + x22x

4
3

we will strategically evaluate the coefficients of certain monomials in order to give us five linear equations that will
allow us to solve for the α variables. So for example, the coefficient in equation 1.2 of x21x

2
2x

2
3 is -6, and in the

expansions of s23, s3s2s1, s3s
3
1, s32, and s22s

2
1 the coefficients are 1, 3, 6, 6, and 15, respectively. Hence we have the

equation
α1 + 3α2 + 6α3 + 6α4 + 15α5 = −6

In the same vein, we evaluate the coefficients for the monomials x31x
2
2x3 to get

α2 + 3α3 + 3α4 + 8α5 = 2

x41x2x3 to get
α3 + 2α5 = −2

x31x
3
3 to get

α4 + 2α5 = −2

and finally x41x
2
3 to get

α5 = 1

Solving the above five equations we obtain α1 = −27, α2 = 18, α3 = −4, α4 = −4, and α5 = 1, which in turn
informs us that

d(z1, z2, z3) = −27z23 + 18z3z2z1 − 4z3z
3
1 − 4z32 + z21z

2
2

Hence for any f(t) = t3 + at2 + bt+ c

disc(f) = d(−a, b,−c) = −27c2 + 18abc− 4a3c− 4b3 + a2b2

(c) Extra Credit

2 Newton Polynomials

(a) Find formulas for Newton polynomials p2, p3, and p4 in terms of s1 through s4

Since p2, p3, and p4 are symmetric polynomials over Z, they can be uniquely represented as a polynomial in terms
of the elementary symmetric polynomials over Z. Furthermore, they are homogeneous polynomials of degrees 2, 3,
and 4, respectively, and must therefore have the forms

p2 = a1s
2
1 + a2s2

p3 = b1s
3
1 + b2s1s2 + b3s3

p4 = c1s
4
1 + c2s

2
1s2 + c3s

2
2 + c4s4
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Clause First Term, Lexicographically
s21 x21
s2 x1x2
s31 x31
s1s2 x21x2
s3 x1x2x3
s41 x41
s21s2 x31x2
s22 x21x

2
2

s4 x1x2x3x4

Table 2.1: First terms of elementary symmetric polynomials that generate Newton polynomials.

for integers ai, bi, and ci.
It’s clear that in order to obtain the appropriate values of p2, p3, and p4, a1 = b1 = c1 = 1 since none of

the other clauses in the above equations will be able to account for the x2i , x
3
i , and x4i in each of p1, p2, and p3.

Hence, in determining the formula for pi, our approach will be to start with si1 ordered lexicographically and find
the coefficient of the leftmost clause that isn’t in pi and then subtract the product of that coefficient with the
appropriate clause on the right hand side of the equations above. We will know which are appropriate by looking
at the lexicographical first term of each of the clauses: where these terms have been generated for n = 4.
So for the case of p2 we start with

s21 = x21 + 2x1x2 + x22 + 2x1x3 + 2x2x3 + x23 + 2x1x4 + 2x2x4 + 2x3x4 + x24

in which the first term x21 should remain since it is in p2, but we need to get rid of the second term 2x1x2. Through
use of Table 2.1, this implies that a2 = −2 so that we are left with s21 − 2s2 = x21 + x22 + x23 + x24, and thus the
formula for p2.

For the case of p3 we start with s31 = x41 + 3x21x2 + · · · , leaving off the, currently unimportant, terms after the
first two. Again through use of Table 2.1, the coefficient of 3 in the second term informs us that b2 = −3 so that
we are left with s31 − 3s2s1 = x31 + x32 − 3x1x2x3 + · · · , which finally informs us that b3 = 3, leaving us with p3’s
formula: s31 − 3s2s1 + 3s2.

Finally, by following the same procedure regarding p4, we have

s41 = x41 + 4x31x2 + · · ·
s41 − 4s21s2 = x41 − 2x21x

2
2 + · · ·

s41 − 4s21s2 + 2s22 = x41 + x42 − 4x21x2x3 + · · ·

which therefore implies s41 − 4s21s2 + 2s22 + 4s4 = x41 + x42 + x43 + x44 and yields the formula for p4.

(b) Extra Credit

(c) Extra Credit

3

Let R be a commutative ring and M be an R-module.
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(a) Show the existence of an R-linear “permutation action” of Sn on ⊗n
RM

For each σ ∈ Sn, define fσ : Mn →Mn by (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)) for x1, . . . , xn ∈M . With this definition

fσ((x1, . . . , xn) + (y1, . . . , yn)) = fσ(x1 + y1, . . . , xn + yn)

= fσ(z1, . . . , zn)

=
(
zσ(1), . . . , zσ(n)

)
=

(
xσ(1) + yσ(1), . . . , xσ(n) + yσ(n)

)
=

(
xσ(1), . . . , xσ(n)

)
+
(
yσ(1), . . . , yσ(n)

)
= fσ (x1, . . . , xn) + fσ (y1, . . . , yn)

for x1, . . . , xn, y1, . . . , yn ∈M letting zi = xi + yi for each such i. Furthermore,

fσ(r(x1, . . . , xn)) = fσ(rx1, . . . , rxn)

= fσ(y1, . . . , yn)

=
(
yσ(1), . . . , yσ(n)

)
=

(
rxσ(1), . . . , rxσ(n)

)
= r

(
xσ(1), . . . , xσ(n)

)
= rfσ (x1, . . . , xn)

for r ∈ R and x1, . . . , xn ∈M letting yi = rxi for each such i. Therefore each fσ is an R-multilinear map yielding,
via the universal property of tensors, the existence of a unique R-linear homomorphism fσ : ⊗nRM →Mn through
which fσ factors. Hence fσ(x1⊗ · · · ⊗ xn) =

(
xσ(1), . . . , xσ(n)

)
for each σ ∈ Sn and therefore by defining the action

of Sn on ⊗nRM by having σ act on x ∈ ⊗nRM by (i ◦ fσ)(x) where i : Mn → ⊗nRM is the normal R-multilinear
inclusion map, we obtain the desired R-linear permutation action, since i◦fσ satisfies the axioms of a group action,
being that i and fσ are each homomorphisms. Note that we omit the use of σ · x or x · σ notation in light of the
next part of this problem.

(b) Is the action previously defined a left or right action?

Set ϕσ = i ◦ fσ for each σ ∈ Sn so that ϕσ (x1 ⊗ · · · ⊗ xn) = i ◦ fσ (x1 ⊗ · · · ⊗ xn) =
(
xσ(1) ⊗ · · · ⊗ xσ(n)

)
for each

x1, . . . , xn ∈M . For repetitious use later, we point out that ϕτσ = ϕτ ◦ ϕσ for all τ, σ ∈ Sn according to

ϕτσ(x) = ϕτσ

(∑
i

xi

)
=
∑
i

ϕτσ (xi)

=
∑
i

xiτσ(1) ⊗ · · · ⊗ xiτσ(n)

=
∑
i

xiτ(σ(1)) ⊗ · · · ⊗ xiτ(σ(n))

=
∑
i

ϕτ
(
xiσ(1) ⊗ · · · ⊗ xiσ(n)

)
=
∑
i

ϕτ ◦ ϕσ (xi)

= ϕτ ◦ ϕσ
∑
i

xi

= ϕτ ◦ ϕσ(x)

(3.3)

for each x =
∑
i xi =

∑
i xi1 ⊗ · · · ⊗ xin ∈ ⊗nRM . With equation 3.3 in hand we see that if we were to attempt to

make this action a left action then

τσ · x = ϕτσx = ϕτϕσ(x) = ϕτ (ϕσ(x)) = τ · (ϕσ(x)) = τ · (σ · x)
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and if we were to do so as a right action then

x · τσ = ϕτσx = ϕτϕσ(x) = ϕτ (ϕσ(x)) = (ϕσ(x)) · τ = (x · σ) · τ

for each x ∈ ⊗nRM , implying not only that this action is a left action, but that it is not are right action.

(c)

(d) Show R[y1, . . . , yn] ∼= S•
R(M) for free R-module M with rank(M) = n

Since both R[y1, . . . , yn] is a graded ring where each homogenous component of degree k is the ring of homogenous
polynomials of degree k (denote it Rk[y1, . . . , yn]) and S•R(M) is a graded ring where the homogeneous components
of degree k is Sk(M), it suffices to prove that Rk[y1, . . . , yn] is isomorphic to Sk(M) for arbitrary k.

Let B = {v1, . . . , vn} be a set of free generators on M and Y = {y1, . . . , yn}. We will use • to denote the tensor
operation in Sk(M). Define α : Mk → Rk[y1, . . . , yn] and β : Y → Sk(M) by

α(m1, . . . ,mk) =
∏
i

 n∑
j=1

δj(mi)xj


β(xi) = vi • 1 • · · · • 1

where δi ∈ HomR−mod(M,R) is the linear operator which takes vi ∈ B to 1 and all other elements of B to zero. With
the product in its definition and because each factor in that product is the sum of linear maps, α is a symmetric
k-multilinear map. Therefore, we have that two results:

1. The existence of an R-module homomorphism α : Sk(M) → Rk[y1, . . . , yn] through which α factors. This
comes by way of the universal property of symmetric multilinear maps.

2. The existence of an R-algebra homomorphism β : Rk[y1, . . . , yn] → Sk(M) through which β factors. This is
given by the universal property of polynomial algebras.

Pictorially we have the following commutative diagram.

Mk Sk(M)

Rk[y1, · · · , yn] Y

α α β
β

Now, let’s denote x • · · · • x︸ ︷︷ ︸
j times

∈ Sk(M) by x•j so that x•j = xj • 1 • · · · • 1︸ ︷︷ ︸
j−1 times

since each element of Sk(M) is

symmetric. Thus for the generators of Sk(M) and Rk[y1, · · · , yn]

α
(
β (ya11 · · · yann )

)
= α

(
β(y1)•a1 · · ·β(yn)•an)

)
= α (v•a11 · · · v•ann ) = ya11 · · · yann

and
β (α (vi1 • · · · • vik)) = β (α (vi1 , . . . , vik)) = β (xi1 · · ·xik) = vi1 • · · · • vik

which implies that α and β are inverses of each other. Hence Sk(M) is isomorphic to Rk[y1, · · · , yn].

(e) Extra Credit
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4

(a) Compute the character of ρk

Denote the symmetric and rotational generators of D2n by s and r, respectively. Since ρ is the homomorphism of
the action of D2n acting on V1 = R2, then for any arbitrary element sirj ∈ D2n, i ∈ {0, 1}, j ∈ {0, . . . , n− 1}

ρ(sirj) = ρ(s)ρ(rj) =

(
1

1

)i(
cos
(
2πj
n

)
− sin

(
2πj
n

)
sin
(
2πj
n

)
cos
(
2πj
n

) )
and therefore

χρ(s
irj) = Tr

((
1

1

)i(
cos
(
2πj
n

)
− sin

(
2πj
n

)
sin
(
2πj
n

)
cos
(
2πj
n

) ))
=

{
0 i = 1

cos
(
2πj
n

)
otherwise

Hence we can compute the character of ρk of any sirj ∈ D2n

χρk(sirj) = Tr
(
ρk(sirj)

)
· · ·χ

(
ρ(sirj)

)
= Tr

(
ρ(sirj)⊗ · · · ⊗ ρ(sirj)

)
= Tr

(
ρ(sirj)

)
· · ·Tr

(
ρ(sirj)

)
=

{
0 i = 1

cosk
(
2πj
n

)
otherwise

(b)

(c)

(d) Extra Credit
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