Math 503: Abstract Algebra Homework 7

Lawrence Tyler Rush <me@tylerlogic.com>

April 16, 2014 http://coursework.tylerlogic.com/courses/upenn/math503/homework07

(a)			
(b)			
(c)			

(d) Extra Credit

$\mathbf{2}$

Let $K = \mathbb{Q}[T]/(T^3 - 2)$ and let x be the image of T in K.

(a) Show that K is an extension of degree 3 over \mathbb{Q}

The polynomial $T^3 - 2 \in \mathbb{Q}[T]$ is irreducible, and therefore K is generated over \mathbb{Q} by $1, x, x^2$ and is therefore a vector space of degree $\deg(T^3 - 2) = 3$ over \mathbb{Q} .

(b)

Let α be a real number such that $\alpha^3 = 2$. Define $\overline{\tau}_j : \mathbb{Q}[T] \to \mathbb{C}$ for each $j \in \mathbb{Z}/3\mathbb{Z}$ by

$$\overline{\tau}_j(f(T)) = e^{2j\pi\sqrt{-1}/3}f(\alpha)$$

Therefore $T^3 - 2$ is contained within ker $\overline{\tau}_j$ for each j. Since $K = \mathbb{Q}[T]/(T^3 - 2)$, this implies the existence of a unique ring homomorphism $\tau_j : K \to \mathbb{C}$ such that $\tau_j(\alpha) = \overline{\tau}_j(\alpha) = e^{2j\pi\sqrt{-1}/3}\alpha$

(c)

For γ_0 , γ_1 , and γ_2 , let $\gamma_n = \sqrt[3]{2}e^{2\pi n\sqrt{-1/3}}$. Then since these are each roots of $T^3 - 2$ over \mathbb{Q} then

$$K_j \cong K \cong \mathbb{Q}(\gamma_n)$$

for each n. Therefore $L \cong \mathbb{Q}(\gamma_0, \gamma_1, \gamma_2)$, however, we have the linear relation $\gamma_0 + \gamma_1 + \gamma_2 = 0$ due to each γ_n being distinct third roots of 2. This implies that $\mathbb{Q}(\gamma_0, \gamma_1, \gamma_2)$ is actually isomorphic to $\mathbb{Q}(\gamma_1, \gamma_2)$, without loss of generality in selecting two elements of $\gamma_0, \gamma_1, \gamma_2$, since any two are linearly independent. Hence, so is L. Now because $\mathbb{Q}(\gamma_1)$ and $\mathbb{Q}(\gamma_2)$ are have trivial intersection and each is generated by three elements over \mathbb{Q} , then L must be generated by six elements over \mathbb{Q} , i.e. $[L:\mathbb{Q}] = 6$.

(d) Show that there exists a surjective ring homomorphism $K \otimes_{\mathbb{Q}} K \to L$

3

Let L_1, L_2 be finite extensions of a field k with degrees 3 and 2, respectively.

(a)

Since the degrees of L_1 and L_2 over k are finite, then they are both algebraic over k. Letting $\alpha \in L_1 - k$, we have $[k(\alpha):k]$ divides $[L_1:k]$ and $[k(\alpha):k] > 1$, but since $[L_1:k] = 3$, i.e. $[L_1:k]$ is prime, then $[k(\alpha):k]$ must also be 3. Similarly for $\beta \in L_2 - k$, $[k(\beta):k] = 2$. Therefore $L_1 \cong k(\alpha)$ and $L_2 \cong k(\beta)$, which in turn implies

$$L_1 \cong k[x]/(m_{\alpha}(x))$$
 and $L_2 \cong k[x]/(m_{\beta}(x))$

where $m_{\alpha}(x)$ is the minimal polynomial of α , and likewise for β and $m_{\beta}(x)$. This reveals $L_1 \otimes_k L_2 \cong \frac{k[x]}{(m_{\alpha}(x))} \otimes_k \frac{k[x]}{(m_{\beta}(x))}$, but because $m_{\alpha}(x)$ is irreducible over k[x] of degree $[k(\alpha) : k] = 3$ and $m_{\beta}(x)$ is irreducible over k[x] of degree $[k(\beta) : k] = 2$, then $m_{\alpha}(x)$ and $m_{\beta}(x)$ are coprime. Therefore

$$L_1 \otimes_k L_2 \cong {^k[x]}/(m_\alpha(x), m_\beta(x))$$

but furthermore that $(m_{\alpha}(x), m_{\beta}(x))$ is maximal, implying $k[x]/(m_{\alpha}(x), m_{\beta}(x))$ is a field and thus $L_1 \otimes_k L_2$ is as well.

(b)			
(c)			
4			
(a)			
(b)			
(c)			