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Given the Fundamental Theorem of Galois Theory, in order to find fields F € K C L such that K/F and L/K
are finite Galois, but L/F is not Galois, it suffices to find a finite Galois extension M/F with Galois group G with
subgroups Hi, Hy such that Hy < Hy and He <G, but Hy 4 G. In which case, we can put K = M2 and L = M
in order to achieve the desired result.

In the last homework we saw that the splitting field of 7% — 3 over Q is finite Galois with Galois group Ds.
In the group Dg we have subgroups (sr) < (sr,r?) < Dg where s is the mirror symmetry and 7 is the rotational
symmetry.

The fact that r(sr)r® = rsr* = rs = sr3 demonstrates that (sr) is not normal in Dg. Since (sr,r?) =
{1,72,sr, sr3}, then

r2(sr)(rH)™t = rPsrr? =risr® = s
sr(sr)(sr)™' = srsrsr=sr
sr3(sr)(sr3) ™Y = sr3srrs = sr3sr?s = sr
shows that (sr) <(sr,r?), and
San(’I“2)7“_nSm — SmTQSm _ Smsm,,,—2 _ 7“2
Sm,r,n(s,r,),r,fnsm _ Smrnsrlfnsm _ Sm+l7ﬂ172nsm _ 82m+17,2n+1 _ 87’2n+1
Sm’l”n(ST'B)T‘inSm — Smrnsr?)fnsm — Sm+1r372n5m — 32m+1r2n73 _ ST2(n71)+1

shows that (sr,r?) < Dg.

Thus for ' =Q, K = Q6r) and L = Q™) where Q = Q(~/3,1) is the splitting field of T* — 3 over Q, we will
have our desired scenario.

We can determine the fixed fields K and L as follows. Define s and r as the automorphisms

{ 0 — i { 0 — 0
r=< . . s=13 . )
i - i A -
where § = /3. This then sets
{ 0 — —if 9 { 0 — —0
sr=14 . 5 rf=4 . )
1 — —1 1 — 1

Because (sr) is a subgroup of size two, then L/ Q must be an extension of degree four. Since
sr(0(i—1)) =sr(0)(sr(i) —1) = —if(—i— 1) =0(i — 1)

and Q(A(i — 1)) C Q is an extension of degree four, then we must have L = Q(0(i — 1)). Similarly, (sr,7?) is a
subgroup of size four, and Q(i6?) C Q(8(i — 1)) C Q has degree two. Then since

sr(i0?%) = sr(i)(sr(0))? = —i(—if)(—i0) = 6>

and
r2(i0%) = r2(i)(r*(0))? = i(—0)* = i6*

then we have K = Q(i6?).
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Let L be a finite Galois extension of R.

(a) Prove Gal(L/R) is a 2-group

Lemma 3.1. Any non-trivial finite extension of R has even degree.

Proof. If K is a non-trivial finite extension of R, then it is algebraic over R. For any o € K — R, it’s minimal
polynomial m,(z) € R[z] is nonlinear, irreducible. Since all odd degree polynomials in R[z] have a real root, we
conclude deg(mq(z)) is even. However, [K : R] = deg(a) = deg(my(z)) and thus K has even degree. O

By the preceeding lemma, [L : R] is even. Then so is the size of Gal(L/R). So define H to be a 2-Sylow subgroup
of Gal(L/R). Then the index of H in Gal(L/R) is not divisible by two and therefore E = L is an extension of
R with odd degree. However, according to Lemma 3.1, the only such extension is R itself. Thus £ = R. This
furthermore implies that H = Gal(L/R), which, since H is a 2-Sylow subgroup, also means Gal(L/R) is a 2-group.

(b) Prove C is algebraic

Lemma 3.2. There is no irreducible quadratic over C
Proof. Any quadratic over C has roots in C provided by the quadratic formula. O

Let f(T) € C[T] and « be a root of f(T). Assume by way of contradiction that C(«) is a nontrivial extension
over C. Then C(a) is an extension of R of even degree by Lemma 3.1. Thus, Gal(C(a)/R) would be a nontrivial
2-group with size greater than or equal to 4, by part (a) of this problem. But then Gal(C(«)/R) would have a
subgroup of size 4 (Theorem 6.1 [DF04]: “p-groups have subgroups of all applicable sizes”), i.e. there would exist
an extension K/C with degree 2. However, this contradicts the Lemma 3.2, and hence C(«) is trivial, implying
aeC.
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