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Given the Fundamental Theorem of Galois Theory, in order to find fields F ⊂ K ⊂ L such that K/F and L/K
are finite Galois, but L/F is not Galois, it suffices to find a finite Galois extension M/F with Galois group G with
subgroups H1, H2 such that H1 EH2 and H2 EG, but H1 5G. In which case, we can put K = MH2 and L = MH1

in order to achieve the desired result.
In the last homework we saw that the splitting field of T 4 − 3 over Q is finite Galois with Galois group D8.

In the group D8 we have subgroups 〈sr〉 6 〈sr, r2〉 6 D8 where s is the mirror symmetry and r is the rotational
symmetry.

The fact that r(sr)r3 = rsr4 = rs = sr3 demonstrates that 〈sr〉 is not normal in D8. Since 〈sr, r2〉 =
{1, r2, sr, sr3}, then

r2(sr)(r2)−1 = r2srr2 = r2sr3 = sr

sr(sr)(sr)−1 = srsrsr = sr

sr3(sr)(sr3)−1 = sr3srrs = sr3sr2s = sr

shows that 〈sr〉E〈sr, r2〉, and

smrn(r2)r−nsm = smr2sm = smsmr−2 = r2

smrn(sr)r−nsm = smrnsr1−nsm = sm+1r1−2nsm = s2m+1r2n+1 = sr2n+1

smrn(sr3)r−nsm = smrnsr3−nsm = sm+1r3−2nsm = s2m+1r2n−3 = sr2(n−1)+1

shows that 〈sr, r2〉ED8.

Thus for F = Q, K = Ω〈sr,r
2〉 and L = Ω〈sr〉 where Ω = Q( 4

√
3, i) is the splitting field of T 4 − 3 over Q, we will

have our desired scenario.
We can determine the fixed fields K and L as follows. Define s and r as the automorphisms

r =

{
θ 7→ iθ
i 7→ i

s =

{
θ 7→ θ
i 7→ −i

where θ = 4
√

3. This then sets

sr =

{
θ 7→ −iθ
i 7→ −i r2 =

{
θ 7→ −θ
i 7→ i

Because 〈sr〉 is a subgroup of size two, then L/Q must be an extension of degree four. Since

sr(θ(i− 1)) = sr(θ)(sr(i)− 1) = −iθ(−i− 1) = θ(i− 1)

and Q(θ(i − 1)) ⊂ Ω is an extension of degree four, then we must have L = Q(θ(i − 1)). Similarly, 〈sr, r2〉 is a
subgroup of size four, and Q(iθ2) ⊂ Q(θ(i− 1)) ⊂ Ω has degree two. Then since

sr(iθ2) = sr(i)(sr(θ))2 = −i(−iθ)(−iθ) = iθ2

and
r2(iθ2) = r2(i)(r2(θ))2 = i(−θ)2 = iθ2

then we have K = Q(iθ2).
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Let L be a finite Galois extension of R.

(a) Prove Gal(L/R) is a 2-group

Lemma 3.1. Any non-trivial finite extension of R has even degree.

Proof. If K is a non-trivial finite extension of R, then it is algebraic over R. For any α ∈ K − R, it’s minimal
polynomial mα(x) ∈ R[x] is nonlinear, irreducible. Since all odd degree polynomials in R[x] have a real root, we
conclude deg(mα(x)) is even. However, [K : R] = deg(α) = deg(mα(x)) and thus K has even degree.

By the preceeding lemma, [L : R] is even. Then so is the size of Gal(L/R). So define H to be a 2-Sylow subgroup
of Gal(L/R). Then the index of H in Gal(L/R) is not divisible by two and therefore E = LH is an extension of
R with odd degree. However, according to Lemma 3.1, the only such extension is R itself. Thus E = R. This
furthermore implies that H = Gal(L/R), which, since H is a 2-Sylow subgroup, also means Gal(L/R) is a 2-group.

(b) Prove C is algebraic

Lemma 3.2. There is no irreducible quadratic over C

Proof. Any quadratic over C has roots in C provided by the quadratic formula.

Let f(T ) ∈ C[T ] and α be a root of f(T ). Assume by way of contradiction that C(α) is a nontrivial extension
over C. Then C(α) is an extension of R of even degree by Lemma 3.1. Thus, Gal(C(α)/R) would be a nontrivial
2-group with size greater than or equal to 4, by part (a) of this problem. But then Gal(C(α)/R) would have a
subgroup of size 4 (Theorem 6.1 [DF04]: “p-groups have subgroups of all applicable sizes”), i.e. there would exist
an extension K/C with degree 2. However, this contradicts the Lemma 3.2, and hence C(α) is trivial, implying
α ∈ C.
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