Math 508: Advanced Analysis Homework 2

Lawrence Tyler Rush <me@tylerlogic.com>

September 12, 2014 http://coursework.tylerlogic.com/courses/upenn/math508/homework02

(a) For $a \in \mathbb{Q}$ with a > 0 and $a^2 < 2$ find rational b > a with $a^2 < b^2 < 2$

First, if a < 1, then we can simply let b = 1 since $a^2 < 1^2 < 2$ in this case. So assume that $a \ge 1$. This implies $2a + 1 \ge 3$. Furthermore, this implies that $2 - a^2 < 2 - a < 2$, from which we conclude $2 - a^2 < 2a + 1$. Thus, defining $t = \frac{2-a^2}{2a+1}$, means that 0 < t < 1.

With this definition of t, setting b = a + t we see $b^2 = (a + t)^2 = a^2 + 2at + t^2 < a^2 + 2at + t$ where the last inequality comes from the fact that 0 < t < 1. Continuing, we have

$$b^2 < a^2 + t(2a+1) = a^2 + \frac{2-a^2}{2a+1}(2a+1) = a^2 + 2 - a^2 = 2$$

Thus since b = a + t and both a and t are positive, we have $a^2 < b^2 < 2$. Finally, t is rational since it is constructed by a combination of multiplication and addition of rational numbers; this implies that rationality of b since it is the sum of two rationals, a and t.

(b) For $c \in \mathbb{Q}$ with c > 0 and $2 < c^2$, find rational d > 0 with d < c and $2 < d^2 < c^2$

Define $t = \frac{c^2 - 2}{2c}$. Since $0 < c < 2 < c^2$ then

$$t > 0$$
 and $c - t = c - \frac{c^2 - 2}{2c} = \frac{4c^2 - c^2 + 2}{2c} = \frac{3c^2 + 2}{2c} > 0$

Now let d = c - t. The above equations imply that 0 < d < c and also allow for the use of the inequality in the following equation.

$$(c-t)^{2} = c^{2} - 2ct + t^{2} < c^{2} - 2ct = c^{2} - 2c\frac{c^{2} - 2}{2c} = c^{2} - c^{2} + 2 = 2$$

Given this equation, we now have $2 < d^2 < c^2$, and furthermore, since d is equal to some combination of rational numbers which are added/multiplied together, then it too is rational.

2 Some properties of an ordered field.

Let F be an ordered field containing elements x and y.

(a) Show that x < y implies $x < \frac{x+y}{2} < y$

Let x < y. Then the definition of an ordered field and Rudin's Proposition 1.18 yield x + x < x + y, implying 2x < x + y and thus $x < \frac{x+y}{2}$. Similarly we have obtain x + y < y + y, x + y < 2y, and $\frac{x+y}{2} < y$. Combining these results we have

$$x < \frac{x+y}{2} < y$$

as desired.

First suppose x > 0. Then Rudin's Proposition 1.18 (b) implies x(x) > x(0) which is equivalent to $x^2 > 0$. Now suppose x < 0. Rudin's Proposition 1.18 (c) implies x(x) > x(0), i.e. $x^2 > 0$.

(c) Prove $x^2 + y^2 = 0$ implies x = y = 0

Lemma 2.1. If F is some ordered field and $a, b \in F$ are such that a > 0 and b > 0, then a + b > 0.

Proof. Let F be an ordered field with $a, b \in F$ such that a > 0 and b > 0. Adding b to the both sides of a > 0 yields a + b > b, but b > 0, so a + b > 0.

Let x, y not be both identically zero. Without loss of generality, assume $x \neq 0$. The previous problem then implies $x^2 > 0$. So if y = 0, then $x^2 + y^2 = x^2 > 0$. If $y \neq 0$, then the previous problem gives $y^2 > 0$ which the above lemma then yields $x^2 + y^2 > 0$. Hence, in any case, $x^2 + y^2 \neq 0$.

(d) Show that $2xy \le x^2 + y^2$. When does equality occur?

Part (b) of this problem implies that for any x, y we have $(x - y)^2 \ge 0$. Thus $x^2 - 2xy + y^2 \ge 0$, and therefore $x^2 + y^2 \ge 2xy$, as desired.

When does equality occur? Stepping backwards through this proof, we see that $x^2 + y^2 = 2xy$ when $(x-y)^2 = 0$. Then part (b) of this problem implies that x - y = 0. Thus we have equality when x = y.

3 More rational density

(a) Show there is an irrational between rationals x < y

If x < y, then 0 < y - x. Hence the archimedean property of the reals yields an integer n > 0 such that $n(y-x) > \sqrt{2}$. Since $\sqrt{2} > 0$ we have

$$\begin{array}{ll} 0 < & \sqrt{2} < n(y-x) \\ 0 < & \sqrt{2}/n < y - x \\ x < x + \sqrt{2}/n < y \end{array}$$

Now we saw in the last homework that both the multiplication and sum of a rational with an irrational is irrational, so $x + \sqrt{2}/n$ is irrational since $\sqrt{2}$ is irrational.

(b) Show there is a rational between any real numbers x < y

If x < y, then 0 < y - x. So again, the archimedean property gives us an integer n > 0 such that ny - nx > 1. This implies, since consecutive integers have a difference of one, that there must some integer m with nx < m < ny. Thus x < m/n < y, and m/n is rational.

(a) Find all sets $A \subset \mathbb{R}$ such that $\sup A \leq \inf A$

Let $A \subset \mathbb{R}$ with $a = \inf A$ and $b \sup A$. If $x, y \in A$ and x < y then we would have $a \le x < y \le b$, and so it's not possible for a set with two or more elements to have a supremum that's less than or equal to the infimum. Hence only singleton sets have the desired property.

(b) If $A \subset \mathbb{R}$ is bounded above and $B \subset \mathbb{R}$ is bounded below, prove $A \cap B$ is bounded.

Let $A \subset \mathbb{R}$ be bound above by α and $B \subset \mathbb{R}$ be bounded below by β . Then $a \leq \alpha$ for all $a \in A$ and $\beta \leq b$ for all $b \in B$, however, since $A \cap B \subset A$ and $A \cap B \subset B$, then we must have that $\beta \leq x \leq \alpha$ for all $x \in A \cap B$. In other words, $A \cap B$ is bounded.

6

Let $z, w, v \in \mathbb{C}$ be complex numbers.

(a) Prove $|z - w| \ge |z - v| - |v - w|$.

We know for $a, b \in \mathbb{C}$ that $|a+b| \le |a|+|b|$, which implies $|a+b|-|b| \le |a|$. Since a and b are arbitrary, then we can find $x, y \in \mathbb{C}$ when a = x - b and b = y, then $|(x-y)+y|-|y| \le |x-y|$ which implies

$$|x| - |y| \le |x - y|$$

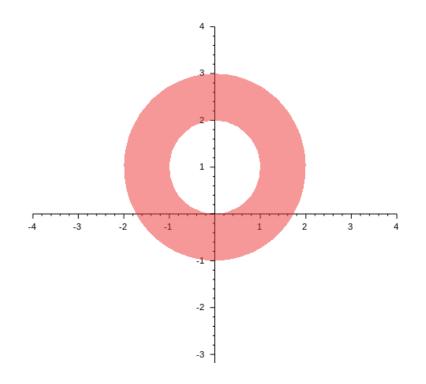
With this, we then have

$$|z - w| = |z(-v + v) - w| = |(z - v) - (w - v)| \ge |z - v| - |w - v| = |z - v| - |v - w|$$

taking advantage of the fact that |x| = |-x| for all $x \in \mathbb{C}$ in the rightmost equality.

(b) Graph the points $z \in \mathbb{C}$ such that 1 < |z - i| < 2

The following region is the set of points, note that the edges of the region are not included.



(c) For $z, w \in \mathbb{C}$ with |z| < 1 and |w| = 1, prove $|(w - z)/(1 - \overline{z}w)| = 1$

We have the following sequence of equations due to the fact that $|\overline{a}| = |a|$, |ab| = |a||b|, |w| = 1, and $\overline{a-b} = \overline{a} - \overline{b}$ for any $a, b \in \mathbb{C}$.

$$\begin{vmatrix} \frac{w-z}{1-\overline{z}w} \end{vmatrix} = \frac{|w-z|}{|1-\overline{z}w|}$$
$$= \frac{|w-z|}{||w|-\overline{z}w|}$$
$$= \frac{|w-z|}{|\overline{w}w-\overline{z}w|}$$
$$= \frac{|w-z|}{|w(\overline{w}-\overline{z})}$$
$$= \frac{|w-z|}{|w||\overline{w}-\overline{z}|}$$
$$= \frac{|w-z|}{|\overline{w}-\overline{z}|}$$
$$= \frac{|w-z|}{|\overline{w}-\overline{z}|}$$
$$= \frac{|w-z|}{|w-z|}$$
$$= 1$$

7

Let $x,y,z\in \mathbb{R}$ and define

$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$

(a) Prove the above $d(\cdot, \cdot)$ satisfies the triangle inequality

If $|x - z| \le |y - z|$ or $|x - z| \le |x - y|$, then the fact that f(t) = t/(1 + t) is an increasing function implies the triangle inequality for d.

So assume that |x-z| is greater than both |x-y| and |y-z|. Since $|x-z| \le |x-y| + |y-z|$ we have

$$\frac{|x-z|}{1+|x-z|} \leq \frac{|x-y|}{1+|x-z|} + \frac{|y-z|}{1+|x-z|} \leq \frac{|x-y|}{1+|x-y|} + \frac{|y-z|}{1+|y-z|}$$

with the rightmost inequality comming from our initial assumption. Thus the triangle inequality holds for this $d(\cdot, \cdot)$.

(b)

The proof for this is identical to the proof of in the previous part of this problem after substituting in the function $|\cdot - \cdot|$ for $g(\cdot, \cdot)$. This is because the only property of $|\cdot - \cdot|$ that was used in the previous proof was that it upholds the triangle inequality, which $g(\cdot, \cdot)$ also does.

8

(a)

Let $f_1(x)/f_2(x), g_1(x)/g_2(x) \in \mathcal{R}.$

By the following, the zero constant is the additive identity:

$$f_1(x)/f_2(x) + 0 = f_1(x)/f_2(x) = 0 + f_1(x)/f_2(x)$$

By the following, the one constant is the multiplicative identity:

$$(f_1(x)/f_2(x))(1) = f_1(x)/f_2(x) = (1)(f_1(x)/f_2(x))$$

Then

$$f_1(x)/f_2(x) + g_1(x)/g_2(x) = \frac{f_1(x)g_2(x) + g_1(x)f_2(x)}{g_2(x)f_2(x)}$$

so \mathcal{R} is closed under addition. Since polynomial addition is commutative and associative, then addition is commutative and associative in \mathcal{R} . Finally, since f(x) + (-f(x)) = 0, additive inverses exist in \mathcal{R} . Since

$$(f_1(x)/f_2(x))(g_1(x)/g_2(x)) = f_1(x)g_1(x)/f_2(x)g_2(x)$$

then \mathcal{R} is closed under multiplication. Since polynomial multiplication is commutative and associative, then multiplication is commutative and associative in \mathcal{R} . Finally, if $f_1(x)/f_2(x)$ is not zero, then

$$(f_1(x)/f_2(x))(f_2(x)/f_1(x)) = 1$$

and so multiplicative inverses exist in \mathcal{R} .

Finally, since polynomial addition and multiplication obides by the distributive law, then so does addition and multiplication in \mathcal{R} .

So \mathcal{R} is indeed a field.

(b)

(c)