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1 Density of rationals in reals

(a) For a ∈ Q with a > 0 and a2 < 2 find rational b > a with a2 < b2 < 2

First, if a < 1, then we can simply let b = 1 since a2 < 12 < 2 in this case. So assume that a ≥ 1. This implies
2a + 1 ≥ 3. Furthermore, this implies that 2 − a2 < 2 − a < 2, from which we conclude 2 − a2 < 2a + 1. Thus,

defining t = 2−a2

2a+1 , means that 0 < t < 1.

With this definition of t, setting b = a + t we see b2 = (a + t)2 = a2 + 2at + t2 < a2 + 2at + t where the last
inequality comes from the fact that 0 < t < 1. Continuing, we have

b2 < a2 + t(2a+ 1) = a2 +
2− a2

2a+ 1
(2a+ 1) = a2 + 2− a2 = 2

Thus since b = a+ t and both a and t are positive, we have a2 < b2 < 2. Finally, t is rational since it is constructed
by a combination of multiplication and addition of rational numbers; this implies that rationality of b since it is the
sum of two rationals, a and t.

(b) For c ∈ Q with c > 0 and 2 < c2, find rational d > 0 with d < c and 2 < d2 < c2

Define t = c2−2
2c . Since 0 < c < 2 < c2 then

t > 0 and c− t = c− c2 − 2

2c
=

4c2 − c2 + 2

2c
=

3c2 + 2

2c
> 0

Now let d = c − t. The above equations imply that 0 < d < c and also allow for the use of the inequality in the
following equation.

(c− t)2 = c2 − 2ct+ t2 < c2 − 2ct = c2 − 2c
c2 − 2

2c
= c2 − c2 + 2 = 2

Given this equation, we now have 2 < d2 < c2, and furthermore, since d is equal to some combination of rational
numbers which are added/multiplied together, then it too is rational.

(c)

2 Some properties of an ordered field.

Let F be an ordered field containing elements x and y.

(a) Show that x < y implies x < x+y
2

< y

Let x < y. Then the definition of an ordered field and Rudin’s Proposition 1.18 yield x + x < x + y, implying
2x < x+ y and thus x < x+y

2 . Similarly we have obtain x+ y < y + y, x+ y < 2y, and x+y
2 < y. Combining these

results we have

x <
x+ y

2
< y

as desired.
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(b) Prove x 6= 0 implies x2 > 0

First suppose x > 0. Then Rudin’s Proposition 1.18 (b) implies x(x) > x(0) which is equivalent to x2 > 0.

Now suppose x < 0. Rudin’s Proposition 1.18 (c) implies x(x) > x(0), i.e. x2 > 0.

(c) Prove x2 + y2 = 0 implies x = y = 0

Lemma 2.1. If F is some ordered field and a, b ∈ F are such that a > 0 and b > 0, then a+ b > 0.

Proof. Let F be an ordered field with a, b ∈ F such that a > 0 and b > 0. Adding b to the both sides of a > 0
yields a+ b > b, but b > 0, so a+ b > 0.

Let x, y not be both identically zero. Without loss of generality, assume x 6= 0. The previous problem then
implies x2 > 0. So if y = 0, then x2 + y2 = x2 > 0. If y 6= 0, then the previous problem gives y2 > 0 which the
above lemma then yields x2 + y2 > 0. Hence, in any case, x2 + y2 6= 0.

(d) Show that 2xy ≤ x2 + y2. When does equality occur?

Part (b) of this problem implies that for any x, y we have (x − y)2 ≥ 0. Thus x2 − 2xy + y2 ≥ 0, and therefore
x2 + y2 ≥ 2xy, as desired.

When does equality occur? Stepping backwards through this proof, we see that x2+y2 = 2xy when (x−y)2 = 0.
Then part (b) of this problem implies that x− y = 0. Thus we have equality when x = y.

3 More rational density

(a) Show there is an irrational between rationals x < y

If x < y, then 0 < y−x. Hence the archimedean property of the reals yields an integer n > 0 such that n(y−x) >
√

2.
Since

√
2 > 0 we have

0 <
√

2 < n(y − x)

0 <
√

2/n < y − x

x <x+
√

2/n < y

Now we saw in the last homework that both the multiplication and sum of a rational with an irrational is irrational,
so x+

√
2/n is irrational since

√
2 is irrational.

(b) Show there is a rational between any real numbers x < y

If x < y, then 0 < y−x. So again, the archimedean property gives us an integer n > 0 such that ny−nx > 1. This
implies, since consecutive integers have a difference of one, that there must some integer m with nx < m < ny.
Thus x < m/n < y, and m/n is rational.

4
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(a) Find all sets A ⊂ R such that supA ≤ inf A

Let A ⊂ R with a = inf A and b supA. If x, y ∈ A and x < y then we would have a ≤ x < y ≤ b, and so it’s not
possible for a set with two or more elements to have a supremum that’s less than or equal to the infimum. Hence
only singleton sets have the desired property.

(b) If A ⊂ R is bounded above and B ⊂ R is bounded below, prove A∩B is bounded.

Let A ⊂ R be bound above by α and B ⊂ R be bounded below by β. Then a ≤ α for all a ∈ A and β ≤ b for all
b ∈ B, however, since A ∩ B ⊂ A and A ∩ B ⊂ B, then we must have that β ≤ x ≤ α for all x ∈ A ∩ B. In other
words, A ∩B is bounded.
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Let z, w, v ∈ C be complex numbers.

(a) Prove |z − w| ≥ |z − v| − |v − w|.

We know for a, b ∈ C that |a+ b| ≤ |a|+ |b|, which implies |a+ b| − |b| ≤ |a|. Since a and b are arbitrary, then we
can find x, y ∈ C when a = x− b and b = y, then |(x− y) + y| − |y| ≤ |x− y| which implies

|x| − |y| ≤ |x− y|

With this, we then have

|z − w| = |z(−v + v)− w| = |(z − v)− (w − v)| ≥ |z − v| − |w − v| = |z − v| − |v − w|

taking advantage of the fact that |x| = | − x| for all x ∈ C in the rightmost equality.

(b) Graph the points z ∈ C such that 1 < |z − i| < 2

The following region is the set of points, note that the edges of the region are not included.
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(c) For z, w ∈ C with |z| < 1 and |w| = 1, prove |(w − z)/(1− zw)| = 1

We have the following sequence of equations due to the fact that |a| = |a|, |ab| = |a||b|, |w| = 1, and a− b = a− b
for any a, b ∈ C. ∣∣∣∣ w − z1− zw

∣∣∣∣ =
|w − z|
|1− zw|

=
|w − z|
||w| − zw|

=
|w − z|
|ww − zw|

=
|w − z|
|w(w − z)|

=
|w − z|
|w||w − z|

=
|w − z|
|w − z|

=
|w − z|
|w − z|

=
|w − z|
|w − z|

= 1

7

Let x, y, z ∈ R and define

d(x, y) =
|x− y|

1 + |x− y|
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(a) Prove the above d(·, ·) satisfies the triangle inequality

If |x − z| ≤ |y − z| or |x − z| ≤ |x − y|, then the fact that f(t) = t/(1 + t) is an increasing function implies the
triangle inequality for d.

So assume that |x− z| is greater than both |x− y| and |y − z|. Since |x− z| ≤ |x− y|+ |y − z| we have

|x− z|
1 + |x− z|

≤ |x− y|
1 + |x− z|

+
|y − z|

1 + |x− z|
≤ |x− y|

1 + |x− y|
+
|y − z|

1 + |y − z|

with the rightmost inequality comming from our initial assumption. Thus the triangle inequality holds for this
d(·, ·).

(b)

The proof for this is identical to the proof of in the previous part of this problem after substituting in the function
| ·− · | for g(·, ·). This is because the only property of | ·− · | that was used in the previous proof was that it upholds
the triangle inequality, which g(·, ·) also does.
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(a)

Let f1(x)/f2(x), g1(x)/g2(x) ∈ R.
By the following, the zero constant is the additive identity:

f1(x)/f2(x) + 0 = f1(x)/f2(x) = 0 + f1(x)/f2(x)

By the following, the one constant is the multiplicative identity:

(f1(x)/f2(x)) (1) = f1(x)/f2(x) = (1) (f1(x)/f2(x))

Then

f1(x)/f2(x) + g1(x)/g2(x) =
f1(x)g2(x) + g1(x)f2(x)

g2(x)f2(x)

so R is closed under addition. Since polynomial addition is commutative and associative, then addition is commu-
tative and associative in R. Finally, since f(x) + (−f(x)) = 0, additive inverses exist in R.
Since

(f1(x)/f2(x)) (g1(x)/g2(x)) = f1(x)g1(x)/f2(x)g2(x)

then R is closed under multiplication. Since polynomial multiplication is commutative and associative, then mul-
tiplication is commutative and associative in R. Finally, if f1(x)/f2(x) is not zero, then

(f1(x)/f2(x)) (f2(x)/f1(x)) = 1

and so multiplicative inverses exist in R.
Finally, since polynomial addition and multiplication obides by the distributive law, then so does addition and

multiplication in R.

So R is indeed a field.

(b)

(c)
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