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1 Give an example of closed sets Vj ⊂ R where ∪∞j=1Vj is open.

Define Vj = [−j, j]. Then ∪∞j=1Vj = R and R is open. But this example leaves a bad taste in one’s mouth since the
union of the {Vj} is the whole space, R. As for a more slick example, define Vj = [−(1− 1/j), 1− 1/j]. In this case
∪∞j=1VJ = (−1, 1), which is open in R.

2 Construct a bounded set of real numbers with exactly three limit
points

Define

Vx =

{
x+

1

n

∣∣∣∣n ∈ Z+

}
With this definition, x is the only limit point of Vx and is bounded since it is contained within the ball B1(x).
Therefore V1 ∪ V2 ∪ V3 is a bounded set with exactly three limit points.

3 Find the interior points and boundary points of each set, and de-
scribe the sets closure

(a) (0, 1] ⊂ R

Interior points: (0, 1)
Boundary points: {0, 1}
Closure: [0, 1]

(b) R2 ⊂ R3 (the coordinate plane z = 0)

Interior points: There are no interior points because there is no ball of any point completely contained in the
plane.
Boundary points: The set itself is the set of boundary points.
Closure: This set is closed, so the closure is itself.

(c) Q ⊂ R

Interior points: There are no interior points. The set is countable, and therefore discrete, so no neighborhood of
any point can be completely contained within R.
Boundary points: R
Closure: R

(d)

The graph of the function

y =

{
sin 1

x x 6= 0
0 x = 0

as a subset of R2. Call the set G.
Interior points: There are no interior points.
Boundary points: G ∪ {(0, y) | |y| ≤ 1}
Closure: Same as the boundard points.
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4 Which sets are compact? Why?

(a) [0, 1] ⊂ R

This set is a closed and bounded subset of R, so it’s compact by Heine-Borel.

(b) {0} ∪ {1, 1
2
, . . . , 1

n
, . . .} ⊂ R

Again, this set is a closed and bounded subset of R, so it’s compact by Heine-Borel.

(c) X=[0, 1] \ Q as a subset of R

Since X contains no rational numbers then 0 6∈ X, however, every open ball of zero will contain a point of X since
it will contain an irrational in [0, 1]. Therefore 0 is a limit point of X, but since it’s not contained in X, X is not
closed. Because X is not closed as a subset of R then it is not compact, again by Heine-Borel.

5

For any element xk ∈ S we have that

1

10
xk =

9

102
+

9

103
+

9

104
+ · · ·+ 9

10k+1

so

xk −
1

10
xk =

9

10
− 9

10k+1(
1− 1

10

)
xk =

9

10
− 9

10k+1

(10− 1)xk = 9− 9

10k

9xk = 9− 9

10k

xk = 1− 1

10k

which gives us a closed form for each xk ∈ S. With this formula, it’s obvious that 1 is an upper bound. Assume for
later contradiction that there exists an a < 1 where a is an upper bound. However, for any integer k > − log10(1−a)
we have

xk = 1− 1

10k
> 1− 1

10− log10(1−a)
= 1− 10log10(1−a) = 1− (1− a) = a

which contradicts our assumption that a is an upper bound. Thus 1 is the supS.

6

Define 〈A,B〉 for A,B ∈Mk,n by 〈A,B〉 = trace(ABt)
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(a) Show this 〈·, ·〉 is an inner product.

Positive Definite Let A ∈ Mk×n with r1, r2, . . . , rk being the k vectors that make up the rows of A. Then
〈A,A〉 = trace(AAt) = r1r

t
1 + r2r

t
2 + · · · + rkr

t
k. Since each rir

t
i is simply the dot product of ri with itself,

then each rir
t
i ≥ 0 with equality when ri is the zero vector. Thus 〈A,A〉 ≥ 0 with equality when A is the zero

matrix.

Additivity Let A,B,C ∈Mk×n. By properties of the trace function and matrix multiplication we have

〈A+B,C〉 = trace
(
(A+B)Ct

)
= trace

(
ACt +BCt

)
= trace(ACt) + trace(BCt) = 〈A,C〉+ 〈B,C〉

Homogeneity Let A,B ∈Mk×n and α ∈ R. By properties of the trace function we have

〈αA,B〉 = trace(αABt) = α trace(ABt) = α 〈A,B〉

Symmetry Let A,B ∈Mk×n. By properties of the trace function we have

〈A,B〉 = trace
(
ABt

)
= trace

(
(ABt)t

)
= trace

(
BAt

)
= 〈B,A〉

(b) Let |A|2 = 〈A,A〉 and define d(A,B) := |A−B|. Show d is a metric.

Non-negativity
d(A,B) = |A−B| =

√
〈A,B〉 ≥

√
0 = 0

Symmetry
d(A,B) = |A−B| =

√
〈A,B〉 =

√
〈B,A〉 = |B −A| = d(B,A)

Triangle Inequality

d(A,B) = |A−B| = |A− C + C −B| = |(A− C) + (C −B)| ≤ |A− C|+ |C −B| = d(A,C) + d(C,B)

(c)

(d)

7

Let K be compact in Rn with x 6∈ K. Further let d = inf{d(x, y) | y ∈ K}. There must be a limit point z ∈ Rn of K
such that d(x, z) = d, If there were not such a point, then we’d be able to find some r > 0 such that Br(p)∩K = {}
for p with d(x, p) = d. This would imply that, say, d + 1

2r would be a lower bound on the set {d(x, y) | y ∈ K},
which is a contradiction since d is the infimum of that set. Now because z is a limit point of K and K is compact,
then it is also closed by Heine-Borel. Hence z ∈ K, as desired.

8

Let X = R − {0} with the normal metric on R of the absolute value of the difference between two points. Then
the sets A = [−1, 0) and B = (0, 1] are closed sets since zero is not in X. They are obviously dijsoint. Furthermore
dist(A,B) = 0 since each has points arbitrarily close to zero.
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9

Let {xn} be a sequence of points in R2 that contains every point with rational coordinates. Let {rn} be a sequence
of positive real numbers such that

∑
n rn = 1. Define

U =
⋃
n

D(xn, rn)

where D(x, r) is the disc of radius r centered at x.

(a) Show U is open and dense in R

The set U is open because it is the union of open sets. Also, the set U is dense in R2 because Q2 is dense in R2

and U contains Q2 as a subset.

(b) Show that no straight line L is completely contained in U

Let L be a line in the plane. A line is the linear combination of two specified points, so let those points be u and
v. Then L is the set of points (1− c)u+ cv = u+ c(v − u) for all c ∈ R. By way of contradiction, assume that L is
completely contained in U . Then for any n ∈ N, we have that D(xn, rn)∩L = {u+ c(v−u) | c ∈ (sn, tn)} for some
sn, tn ∈ R. Thus by defining the function f : L→ R by f(u+ c(v−u)) = c we see that f(D(xn, rn)∩L) = (sn, tn).
So for all n ∈ N, we get an open cover of the real line. For instance, we can cover the closed interval [0, 3], but since
[0, 3] is compact, we can find a finite open subcover (sn1 , tn1), . . . , (snk

, tnk
). However, this implies that

3 ≤
k∑
i=1

(tni − sni) ≤
∞∑
n=1

(tn − sn) ≤
∞∑
i=1

2rn = 2

∞∑
i=1

rn = 2

and we thus arrive at a contradiction. Hence L is not completely contained in U .

10 Product Topology

Let (E1, d1) and (E2, d2) be two metric spaces and define the distance on E1 × E2 to be

d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2)

for each (x1, y1), (x2, y2) ∈ E1 × E2.

(a) Warmup

Viewing R2 as R× R we have
d((0, 0), (1, 2)) = d(0, 1) + d(0, 2) = 1 + 2 = 3

and the “disc” centered at the origin is

Rush 4



(b)

Let U ⊂ E1 × E2 be an open subset. Let (u1, u2) ∈ U . We can thus find an open ball Br(u1, u2) ⊂ U . Define

U1 = {x ∈ E1 | d((x, u2), (u1, u2)) < r}. With this definition for any x ∈ U1, the open ball of radius r−d1(x,u1)
2 will

be contained in U1 since any y ∈ B r−d1(x,u1)
2

(x) has that

d((y, u2), (u1, u2)) = d1(y, u1) + d2(u2, u2)

= d1(y, u1)

≤ d1(y, x) + d1(x, u1)

<
r − d1(x, u1)

2
+ d1(x, u1)

=
r − d1(x, u1) + 2d1(x, u1)

2

=
r + d1(x, u1)

2

<
r + r

2
= r

so that d((y, u2), (u1, u2)) < r. Thus U1 is open in E1. Similarly, we also have that the set U2 = {x ∈
E2 | d((u1, x), (u1, u2)) < r} is open in E2 because each x ∈ U2 has the open ball B r−d2(x,u2)

2

(x) around it which

is completely contained in U2. Finally, with the simple definitions of U1 and U2, we see (u1, u2) ∈ U1 × U2 and
U1 × U2 ⊂ Br(u1, u2) ⊂ U , as desired.

Conversely, assume that for each point (u1, u2) ∈ U there exist U1, U2 open in E1, E2, respectively, with
(u1, u2) ∈ U1 × U2 and U1 × U2 ⊂ U . So fix (u1, u2) ∈ U . As a consequence of the hypothesis at the opening of
this paragraph, we can find open balls Br1(u1) ⊂ U1 and Br2(u2) ⊂ U2. Define r = min(r1, r2). Then for any point
(x, y) ∈ Br((u1, u2)) we have

d1(u1, x) ≤ d1(u1, x) + d2(u2, y) = d((u1, x), (u2, y)) < r ≤ r1

and
d2(u2, y) ≤ d1(u1, x) + d2(u2, y) = d((u1, x), (u2, y)) < r ≤ r2

which implies x ∈ Br1(u1) and y ∈ Br2(u2), respectively. In turn, this means (x, y) ∈ U1 × U2 and thus (x, y) is
also in U . Hence the open ball Br((u1, u2)) is contained in U , i.e. U is open.
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11 The p-adic topology on the rational numbers.

(a) Show that (Q, dp) is a metric space.

Fix a prime p.

Lemma 11.1. For x, y, z ∈ Q, d(x, z) ≤ max(d(x, y), d(y, z)).

Proof. Let x, y, z be rational numbers. Then we have

x− y = pν1
n1
k1
, y − z = pν2

n2
k3

and x− z = pν3
n3
k2

where p does not divide any ni or ki. With this in place we assume without loss of generality that ν1 ≤ ν2 so that

x− z = (x− y) + (y − z) = pν1
n1
k1

+ pν2
n2
k3

= pν1
(
n1
k1

+ pν2−ν1
n2
k3

)
= pν1

(
n1k2 + pν2−ν1n2k1

k1k2

)
Now with both the above and below forms of x − z, we see ν3 ≥ ν1, which given our assumption that ν1 ≤ ν2,
implies ν3 ≥ min(ν1, ν2). Hence we have

d(x, z) = |x− z|p = p−ν3 ≤ p−min(ν1,ν2) = max
(
p−ν1 , p−ν2

)
= max (|x− y|p, |y − z|p) = max (d(x, y), d(y, z))

as desired.

Non-negativity Let x, y ∈ Q be distinct. Then d(x, y) = |x − y|p = p−ν for some ν. Since p is positive, then
d(x, y) will always be positive. On the other hand d(x, x) = |x− x|p = 0.

Symmetry Let x, y ∈ Q with x− y = pν nk . Then y − x = pν −nk , implying that |x− y|p = |y − x|p = p−ν . Hence
d(x, y) = d(y, x).

Triangle Inequality Let x, y, z ∈ Q. Making use of the lemma above, we obtain

d(x− z) ≤ max (d(x, y), d(y, z)) ≤ d(x, y) + d(y, z)

(b) For x, a ∈ Q show that x ∈ Nr(a) implies Nr(x) = Nr(a).

Let x, y, a ∈ Q with r > 0 and x ∈ Nr(a). Then d(x, a) < r.
So for any y ∈ Nr(x), d(x, y) < r. In particular, d(y, a) ≤ max(d(x, a), d(x, y)) < max(r, r) = r, by the above

lemma. So y ∈ Nr(a), i.e. Nr(x) ⊂ Nr(a).
On the other hand, we similarly have that for any y ∈ Nr(a), d(y, a) < r and therefore d(x, y) ≤ max(d(x, a), d(a, y)) <

max(r, r) = r again by the above lemma. Thus y ∈ Nr(x), meaning Nr(a) ⊂ Nr(x).

Combining these two results leaves us with Nr(x) = Nr(a).

(c) Show that any two neighborhoods are disjoint, or one is contained in the other.

Let a, a′ ∈ Q and r, r′ be positive reals. If Nr(a) and Nr′(a
′) are disjoint, we are done. So assume not. Then there

is an x ∈ Nr(a)∩Nr′(a′). By the previous part of the problem, we then have Nr(x) = Nr(a) and Nr′(x) = Nr′(a
′).

Thus by assuming without loss of generality that r < r′ we obtain

Nr(a) = Nr(x) ⊂ N ′r(x) = N ′r(a
′)

as desired.
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