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1 Give an example of closed sets V; C R where UJ‘?‘;le is open.

Define V; = [—j, j]. Then U52,V; = R and R is open. But this example leaves a bad taste in one’s mouth since the
union of the {V;} is the whole space, R. As for a more slick example, define V; = [—(1 —1/4),1—1/j]. In this case
Us2, Vs = (—1,1), which is open in R.

2 Construct a bounded set of real numbers with exactly three limit
points

Define .
Vx{x+n€Z+}
n

With this definition, « is the only limit point of V, and is bounded since it is contained within the ball B;(z).
Therefore V3 U V5o U Vs is a bounded set with exactly three limit points.

3 Find the interior points and boundary points of each set, and de-
scribe the sets closure

(a) (0,1] CR

Interior points: (0,1)
Boundary points: {0,1}
Closure: [0,1]

(b) R? C R? (the coordinate plane z = 0)

Interior points: There are no interior points because there is no ball of any point completely contained in the
plane.

Boundary points: The set itself is the set of boundary points.

Closure: This set is closed, so the closure is itself.

(c) QCR

Interior points: There are no interior points. The set is countable, and therefore discrete, so no neighborhood of
any point can be completely contained within R.

Boundary points: R

Closure: R

(d)

The graph of the function

{ sin% x#0
0 z=0
as a subset of R2. Call the set G.

Interior points: There are no interior points.

Boundary points: GU{(0,y) | |y| <1}

Closure: Same as the boundard points.
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4 Which sets are compact? Why?

(a) [0,1]] CR

This set is a closed and bounded subset of R, so it’s compact by Heine-Borel.

(b) {o}u{1,z,...,%,...}CR

Again, this set is a closed and bounded subset of R, so it’s compact by Heine-Borel.

(c) X=[0,1] \ Q as a subset of R

Since X contains no rational numbers then 0 € X, however, every open ball of zero will contain a point of X since
it will contain an irrational in [0, 1]. Therefore 0 is a limit point of X, but since it’s not contained in X, X is not
closed. Because X is not closed as a subset of R then it is not compact, again by Heine-Borel.

5

For any element xj € S we have that

1,9 .9 9 . 9
1077 102 " 103 " 10 10k+1
SO
oo g = 9
FTT07P T 10 10kt
L D A
10)7F = 10 1081
9
9
91y = 9— —
Tk 10%
1
= 1=

which gives us a closed form for each z), € S. With this formula, it’s obvious that 1 is an upper bound. Assume for
later contradiction that there exists an a < 1 where a is an upper bound. However, for any integer k > —log,q(1—a)
we have

1 1

— = 1 _-10%cw0(-a) — 1 (1 _¢q) =
10E>1 10— Teere(0=a) 1 — 108w 1-1—-a)=a

ZL’E:l—

which contradicts our assumption that a is an upper bound. Thus 1 is the sup S.

6

Define (4, B) for A, B € My, by (A, B) = trace(AB")

Rush 2



(a) Show this (-,-) is an inner product.

Positive Definite Let A € My, with r1,7s,..., 7 being the k vectors that make up the rows of A. Then
(A, Ay = trace(AAY) = rirl + rorl + -+ + rrh. Since each rir! is simply the dot product of r; with itself,
then each r;r! > 0 with equality when r; is the zero vector. Thus (A4, A) > 0 with equality when A is the zero
matrix.

Additivity Let A, B,C € Mjx,. By properties of the trace function and matrix multiplication we have

(A+ B,C) = trace ((A+ B)C") = trace (AC" 4+ BC") = trace(AC") + trace(BC") = (A4,C) + (B, C)

Homogeneity Let A, B € My, and a € R. By properties of the trace function we have

(A, B) = trace(aAB") = atrace(AB") = a (A, B)

Symmetry Let A, B € Myyx.,. By properties of the trace function we have

(A, B) = trace (AB") = trace ((AB")") = trace (BA") = (B, A)

(b) Let |A|? = (A, A) and define d(A, B) := |A — B|. Show d is a metric.

Non-negativity

d(A,B)=|A—B|=+/(A,B) >vV0=0

Symmetry

d(A,B) =|A—B|=+/(A,B) = V/(B,A) = |B - A| = d(B, 4)
Triangle Inequality

d(A,B)=|A—B|=|A—C+C—B|=|(A-C)+(C - B)| <|A—C|+|C - B| = d(A,C) +d(C, B)

(c)

7

Let K be compact in R” with « ¢ K. Further let d = inf{d(x,y) | y € K}. There must be a limit point z € R" of K
such that d(x, z) = d, If there were not such a point, then we’d be able to find some r > 0 such that B, (p) N K = {}
for p with d(z,p) = d. This would imply that, say, d + 3r would be a lower bound on the set {d(z,y) | y € K},
which is a contradiction since d is the infimum of that set. Now because z is a limit point of K and K is compact,
then it is also closed by Heine-Borel. Hence z € K, as desired.

8

Let X = R — {0} with the normal metric on R of the absolute value of the difference between two points. Then
the sets A = [—1,0) and B = (0, 1] are closed sets since zero is not in X. They are obviously dijsoint. Furthermore
dist(A4, B) = 0 since each has points arbitrarily close to zero.
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9

Let {x,} be a sequence of points in R? that contains every point with rational coordinates. Let {r,} be a sequence
of positive real numbers such that >, r, = 1. Define

U= UD(:EH,TTL)
where D(z,r) is the disc of radius r centered at x.

(a) Show U is open and dense in R

The set U is open because it is the union of open sets. Also, the set U is dense in R? because Q? is dense in R?
and U contains Q2 as a subset.

(b) Show that no straight line L is completely contained in U

Let L be a line in the plane. A line is the linear combination of two specified points, so let those points be u and
v. Then L is the set of points (1 — c)u+ cv = u+ c¢(v — u) for all ¢ € R. By way of contradiction, assume that L is
completely contained in U. Then for any n € N, we have that D(x,,r,) N L = {u+c(v—u) | ¢ € (sp,t,)} for some
Snstn € R. Thus by defining the function f : L — R by f(u+c(v—u)) = ¢ we see that f(D(xp,rn) L) = (Sn,tn).
So for all n € N, we get an open cover of the real line. For instance, we can cover the closed interval [0, 3], but since
[0, 3] is compact, we can find a finite open subcover (sp,,%n,),-- -, (Sn,,tn, ). However, this implies that

k 0o oo oo
3L (b, —50) <D (tn—5) <Y 2y =2 1, =2
i=1 n=1 i=1 i=1

and we thus arrive at a contradiction. Hence L is not completely contained in U.

10 Product Topology

Let (F1,dy) and (E9,ds) be two metric spaces and define the distance on Ey x Es to be

d((z1,91), (22,92)) = di(z1,22) + d2(y1, y2)

for each (x1,11), (x2,y2) € E1 X Es.

(a) Warmup

Viewing R? as R x R we have
d((0,0),(1,2)) =d(0,1) +d(0,2) =1+2=3

and the “disc” centered at the origin is
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(b)

Let U C E; X E3 be an open subset. Let (uj,us) € U. We can thus find an open ball B,.(uj,us) C U. Define

Uy ={z € E; | d((x,us2), (u1,us)) < r}. With this definition for any x € Uy, the open ball of radius M will

be contained in U; since any y € Br—d;(=.u;) () has that
2

d((y, ua), (u1,uz2)) di(y, 1) + da(ug, uz)

dl (y, ul)

< di(y, ) + di(z,uq)

—d
< T2 g )
r—di(z,ur) + 2dy (2, up)
B 2
_r4di(w,u)

2

< T+

2
= r

so that d((y,u2), (u1,u2)) < r. Thus Uy is open in F;. Similarly, we also have that the set Uy = {z €
Es | d((u1,z), (u1,u2)) < 7} is open in Fy because each x € Uy has the open ball Br_ay@.up () around it which
is completely contained in Us. Finally, with the simple definitions of Uy and Us, we see2 (u1,u2) € Uy x Us and
Uy x Uy C By(u1,uz2) C U, as desired.

Conversely, assume that for each point (uj,us) € U there exist Uy, Us open in FEj, Es, respectively, with
(u1,uz) € Uy x Uy and Uy x Uy C U. So fix (ug,u2) € U. As a consequence of the hypothesis at the opening of
this paragraph, we can find open balls B, (u1) C Uy and B,,(uz2) C Us. Define r = min(rq,r2). Then for any point
(z,y) € Br((u1,uz2)) we have

di(uy, ) < di(ur,z) + da(uz,y) = d((u1,2), (uz,y)) <7 <7

and
d2(u2ay) < dl(ulax) + dQ(u27y) = d((ul,x), (Ug,y)) <r <

which implies ¢ € B,,(u1) and y € B,,(uz), respectively. In turn, this means (z,y) € Uy x Uy and thus (z,y) is
also in U. Hence the open ball B, ((u1,uz)) is contained in U, i.e. U is open.
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11 The p-adic topology on the rational numbers.

(a) Show that (Q,d,) is a metric space.

Fix a prime p.
Lemma 11.1. For z,y,z € Q, d(z, z) < max(d(z,y),d(y, 2)).

Proof. Let x,y, z be rational numbers. Then we have

n n
x—y:p”lk—i, y—z=p"— and m—z:p”?’k—i

where p does not divide any n; or k;. With this in place we assume without loss of generality that v; < vy so that

e .M wh2 o (M v M2\ _ niks 4+ p*2Vingk,
r—z=(@-y)+y—2)=p PRt A g ) =P ks

Now with both the above and below forms of x — z, we see v3 > vy, which given our assumption that v, < vo,
implies v3 > min(vy, v2). Hence we have

dlz,z) =le—zlp=p " <p~ min(v1,v2) — pyax (p"’%p_”"‘) =max (| — ylp, |y — 2|p) = max (d(z,y),d(y, 2))
as desired. 0

Non-negativity Let z,y € Q be distinct. Then d(z,y) = |z — y|, = p~" for some v. Since p is positive, then
d(z,y) will always be positive. On the other hand d(z,z) = |z — x|, = 0.

Symmetry Let z,y € Q with x —y = p”%. Then y —x = p” 5", implying that |z — y|, = |y — x|, = p~". Hence
d(x,y) = d(y, ).

Triangle Inequality Let z,y,z € Q. Making use of the lemma above, we obtain

d(z — z) < max (d(z,y),d(y, 2)) < d(z,y) +d(y, 2)

(b) For x,a € Q show that x € N,(a) implies N,.(x) = N,(a).

Let z,y,a € Q with r > 0 and = € N,.(a). Then d(z,a) <.
So for any y € N,(z), d(x,y) < r. In particular, d(y,a) < max(d(z,a),d(z,y)) < max(r,r) = r, by the above
lemma. So y € N,(a), i.e. Ny(z) C Ny(a).

On the other hand, we similarly have that for any y € N,.(a), d(y,a) < r and therefore d(z,y) < max(d(z,a),d(a,y)) <

max(r,r) = r again by the above lemma. Thus y € N,.(x), meaning N,.(a) C N, (z).

Combining these two results leaves us with N,.(z) = N,(a).

(c) Show that any two neighborhoods are disjoint, or one is contained in the other.

Let a,a’ € Q and r, 7’ be positive reals. If N,.(a) and N, (a’) are disjoint, we are done. So assume not. Then there
is an « € N,-(a) N N, (a’). By the previous part of the problem, we then have N,.(z) = N, (a) and N, (x) = N, (a’).
Thus by assuming without loss of generality that r < r’ we obtain

Nr(a) = Nr(z) C Nj(x) = N;(a)

as desired.
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