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1 Determine the divergence or convergence of
∑ 1

1+zn for complex z

If |z| ≤ 1 the |zn| ≤ 1 which implies |1 + zn| ≤ 2 and subsequently that∣∣∣∣ 1

1 + zn

∣∣∣∣ ≥ 1

2

Therefore 1
1+zn 6→ 0, implying the divergence of

∑
1

1+zn in this case.
Now assume that |z| > 1. Then |zn| increases as n gets large and |zn + 1| > 2. So let N be such that |zn| > 2

for all n > N . Then

|zn + 1| ≥ |zn| > |zn| − 1 ≥ |zn| − |z
n|
2

=
|z|n

2
(1.1)

for all n > N . By separating
∑

1
|1+zn| like so

∞∑
n=1

1

|1 + zn|
=

N∑
n=1

1

|1 + zn|
+

∞∑
n=N+1

1

|1 + zn|

equation 1.1 informs us that

∞∑
n=1

1

|1 + zn|
<

N∑
n=1

1

|1 + zn|
+

∞∑
n=N+1

2

|z|n
=

N∑
n=1

1

|1 + zn|
+

∞∑
n=N+1

(
n
√

2

|z|

)n

Now the left addend of the right-hand side of the above inequality is a finite sum and the right addend is a

convergent geometric series since 0 <
n√2
|z| < 1. Thus the right-hand side of the above inequality converges, implying

the convergence of the left-hand side,
∑∞

n=1
1

|1+zn| . This in turn implies that our series in question is absolutely

convergent when |z| > 1, and therefore convergent.

2 If an > 0,
∑

an converges, and {bn} is bounded show that
∑

anbn
converges.

Let
∑

an be a convergent series with each an > 0 and {bn} a bounded sequence. Define M as the bound on {bn}
so that |bn| < M for all n. Then we have∑

|anbn| =
∑

an|bn| <
∑

anM = M
∑

an

so due to the convergence of
∑

an, then M
∑

an and therefore
∑
|anbn| converges. Hence

∑
anbn converges

absolutely, and so converges.

3 Find the radius of convergence of the following power series.

(a)
∑

n3zn

Since ∣∣∣∣ (n + 1)3zn+1

n3z3

∣∣∣∣ =

∣∣∣∣n3 + 3n2 + 3n + 1

n3
z

∣∣∣∣
approaches z as n increases, then the ratio test tells us that the radius of convergence is 1.
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(b)
∑ 2n

n!
zn

This series is a power series of e2z: ∑ 2n

n!
zn =

∑ 2zn

n!
= e2z

and so this series converges for all z, i.e. the radius is infinite.

(c)
∑

n!zn

Since ∣∣∣∣ (n + 1)!zn+1

n!z3

∣∣∣∣ = |(n + 1)z|

approaches ∞ as n increases, then the ratio test tells us that the radius of convergence is 0, but technically, z = 0
will make the series converge.

4 Detemine the limit of {an} where a0 = 0 and an+1 = a2
n + 4

25
for

n ≥ 1

We first note that if the limit is finite, say L, then it must satisfy L2 − L + 4
25 = 0 given the recursive definition.

Therefore, L can only be 1
5 or 4

5 since these are the roots of that equation.
Now since a0 = 0, the recusive formula just adds a positive value of 4

25 , informing us that this sequence if
monotonically increasing. Furthermore, if an < 1

5 we see that

an+1 = a2n +
4

25
<

(
1

5

)2

+
4

25
=

1

5

which simultaneously implies that the sequence is bounded and rules out 4/5 as a possible limit. Thus the sequence
is monotonically increasing and bounded, implying that it must converge, and because the initial value is zero, the
only point it can converge to is 1

5 .

5 If an ≥ 0 and
∑

an converges, show that
∑ √

an

n
converges

Let an ≥ 0 and assume
∑

an converges. Then the partial sums {sn} with sn = a1 + · · ·+an converge. This implies
the convergence of {tn} where tn =

√
a1 + · · ·+√an since each an ≥ 0. Thus defining

∑
xn =

∑√
an implies that

{tn} is the sequence of partial sums of
∑

xn and they form a bounded sequence. Furthermore, defining
∑

yn as
the harmonic series, we have y0 ≥ y1 ≥ y2 ≥ · · · and limn→∞ yn = 0. Thus Rudin’s Theorem 3.42 informs us that
the series ∑

xnyn =
∑ √

an
n

converges.
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6 Find N so that 1 + 1
2
+ 1

3
+ 1

4
+ · · ·+ 1

N
> 100

Define
∑

an to be the harmonic series. We have that∑
an = 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

> 1 +

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= 1 +

∞∑
k=0

2k
1

2k+1

= 1 +
1

2

∞∑
k=0

2k
1

2k

= 1 +
1

2

∞∑
k=0

2ka2k

Because we know
∑

an diverges, we also have that
∑∞

k=0 2ka2k diverges. So if we can find an integer K such that

1 + 1
2

∑K
k=0 2ka2k > 100 then for N = 2K we’ll have 1 + 1

2 + 1
3 + 1

4 + · · ·+ 1
N > 100. Thus since

1 +
1

2

K∑
k=0

2ka2k = 1 +
1

2

K∑
k=0

2k
1

2k
= 1 +

K

2

then 1 + K
2 > 100 implies that K > 198, so K = 199 and therefore N = 2199 will satisfy.

7 Determine whether or not 1 + 1
2
− 1

3
− 1

4
+ 1

5
+ 1

6
− · · · converges

By grouping the series like so (
1 +

1

2

)
−
(

1

3
+

1

4

)
+

(
1

5
+

1

6

)
−
(

1

7
+

1

8

)
+ · · ·

we see that it is no different than
∑

cn where

cn = (−1)n+1

(
1

2n− 1
+

1

2n

)
This is an alternating series for which

(
1

2n−1 + 1
2n

)
converges to zero, so our original series must also converge by

Rudin’s theorem 3.43.

8

(a)

(b)
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9

10

Let A be an n× n matrix, and use the norm of homoework 3 problem 6.

(a) Compute (I −A)(I + A + A2 + · · ·+ AN)

(I −A)(I + A + A2 + · · ·+ AN ) = I −AN+1

(b) Show that if |A| < 1, then I −A is invertible.

Let |A| < 1. Then as N gets large, I − AN+1 approaches I, so in light of the previous part of this problem, if

(I − A)
∑N

n=0 A
n converges as N gets large, then (I − A) (

∑
An) will be I and therefore I − A will be invertibile.

Since

lim
N→∞

(I −A)

N∑
n=0

An = (I −A) lim
N→∞

N∑
n=0

An = (I −A)

∞∑
n=0

An

we’ll have that I − A is invertible if
∑∞

n=0 A
n converges. Thus because

∑
|An| ≤

∑
|A|n, the right side converges

since it’s a geometric series and |A| < 1. This tells us that
∑

An converges absolutely and that therefore
∑

An

converges. Hence we have our desired result of I −A being invertible.

(c) Show the set of invertible matrices is open

Let ε = 1
|A−1| and B be a matrix in the ε-ball of A. Then we have that |A−B| < ε implying that |A−1||A−B| < 1.

Thus |I−A−1B| < 1. By the previous part of the problem, we then know that I−
(
I −A−1B

)
= A−1B is invertible.

Then there is some invertible matrix C with CA−1B = I. But then B is invertible with inverse CA−1. Hence the
ε-ball of A contains only invertible elements, and so the set of invertible matrices is open.

11 Prove that the set of othogonal n× n matrices are compact.

Since n × n matrices are a subspace of Rn2

, then to show this set is compact, we need only show that it’s closed
and bounded.

Bounded. Since any othogonal matrix A has that AAt = I, then with our definition of the norm, |A|2 = 〈A,A〉 =
trace(AAt) = trace(I) = n. Thus the set of othogonal matrices is bounded.

Closed.

12

(a)
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(b)
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