Math 508: Advanced Analysis Homework 6

Lawrence Tyler Rush <me@tylerlogic.com>

October 27, 2014 http://coursework.tylerlogic.com/courses/upenn/math508/homework06 $\cos x$ is continuous: Let $x \in \mathbb{R}$ For any |h| we have

$$\begin{aligned} |\cos(x+h) - \cos x| &= |\cos x \cos h - \sin h \sin x - \cos x| \\ &= |\cos x (\cos h - 1) + \sin h (-\sin x)| \\ &\leq |\cos x (\cos h - 1)| + |\sin h (-\sin x)| \\ &< |\cos h - 1| + |\sin h| \end{aligned}$$

where the last inequality comes from the fact that $-1 \le -\sin x \le 1$ and $-1 \le \cos x \le 1$ for all values of x. Now, as $h \to 0$, $\cos h \to 1$ and $\sin h \to 0$. This implies the last line in the equation above approaches zero as $h \to 0$. Thus, for any $\varepsilon > 0$ we can find a small enough δ so that for $|h| < \delta |\sin(x+h) - \sin x| < \varepsilon$. Hence $\sin x$ is continuous at x.

sin x is continuous: Let $x \in \mathbb{R}$ For any |h| we have

$$\begin{aligned} |\sin(x+h) - \sin x| &= |\sin x \cos h + \sin h \cos x - \sin x| \\ &= |\sin x (\cos h - 1) + \sin h \cos x| \\ &\leq |\sin x (\cos h - 1)| + |\sin h \cos x| \\ &\leq |\cos h - 1| + |\sin h| \end{aligned}$$

where the last inequality comes from the fact that $-1 \le \sin x \le 1$ and $-1 \le \cos x \le 1$ for all values of x. Like we saw in the previous paragraph, the last line of the above equation can be made arbitrarily close to zero as $h \to 0$. Hence, similar to what we saw in the previous paragraph, $\cos x$ is continuous at x.

$\mathbf{2}$

Let $f(x) = x^2 + 4x$ and $0 < \varepsilon < 4$. Define $\delta = \frac{\varepsilon}{5}$. Then $0 < \delta < 1$, given the constraints on ε . Assume that $|x| < \delta$, so that $0 < |x| < \delta < 1$, in particular $0 < |x|^2 < |x| < 1$. With this and the triangle inequality, we then have

$$|f(x)| = |x^{2} + 4x| \le |x^{2}| + |4x| = |x|^{2} + 4|x| < |x| + 4|x| = 5|x| < 5\delta = \varepsilon$$

as desired.

3 Prove the existence of an $x \in [1, 2]$ such that $x^5 + 2x + 5 = x^5 + 10$

Put $f(x) = x^5 + 2x + 5$ and $g(x) = x^5 + 10$. Being polynomials, f and g are both continuous. Therefore the intermediate value theorem implies that on the interval [1,2] f will take on every value between f(1) = 8 and f(2) = 41 and g will take on every value between g(1) = 11 and g(2) = 26. Since f(1) = 8 < 11 = g(1) and g(2) = 26 < 41 = f(2), f and g must therefore intersect on the interval [1,2]. Hence there's a point x on [1,2] with f(x) = g(x), i.e. where $x^5 + 2x + 5 = x^5 + 10$.

4 Show there exists two diametrically opposite points on the Eath's equator that have the same temperature.

We'll use the 3-dimensional cartesian coordinate system and orient the earth so that the z-axis contains the earth's axis of rotation, the north pole has a positive z coordinate, and the center of the earth is at the orgin. Then the equator will be contained in the xy-plane. Finally, we will denote, by p_{θ} for $\theta \in \mathbb{R}_{\geq 0}$, the point on the equator that is intersected by the line through the origin and $(\cos \theta, \sin \theta, 0)$.

Now let $T : \mathbb{R}_{\geq 0} \to \mathbb{R}$ be the function whose value at $\theta \in \mathbb{R}_{\geq 0}$ is the temperature of p_{θ} . We will assume that this temperature function is continuous. Define the function $D : \mathbb{R}_{\geq 0} \to \mathbb{R}$ by $D(\theta) = T(\theta) - T(\theta + \pi)$, i.e. it is the difference in temperature of p_{θ} and its diametrically opposite point, $p_{\theta+\pi}$. Since D is made up of the composition and difference of continuous functions, then it too is continuous.

Let p_{θ} be a point on the equator that doesn't have the same temperature as its diametric opposite (there must be such a point, otherwise there would be nothing to prove as all points diametrically opposite would have the same temperature). Then $D(\theta) = -D(\theta + \pi)$ and neither values are zero. Without loss of generality, assume that $D(\theta) < 0 < D(\theta + \pi)$. Since D is continuous and it's domain, $\mathbb{R}_{\geq 0}$, is connected, then this and the intermediate value theorem implies that there is a $\theta' \in (\theta, \theta + \pi)$ such that $D(\theta') = 0$. But this implies that $T(\theta') = T(\theta' + \pi)$, i.e. the diametrically opposed points $p_{\theta'}$ and $p_{\theta'+\pi}$ have the same temperature.

$\mathbf{5}$

Define $\{a_n\}$ and $\{b_n\}$ by $a_n = -1/n$ and $b_n = 1/n$. Then of course both sequences converge to zero. Then the function $f : \mathbb{R} \to \mathbb{R}$ defined as

$$f = \begin{cases} 0 & x \le 0\\ \frac{1}{x} & \text{otherwise} \end{cases}$$

has the desired property of $f(a_n) \to 0$ and $f(b_n)$ being unbounded.

Does there exist such a function that's continuous at x = 0 This is not possible as it would contradict Rudin's Theorem 4.2.

6

Let $f(a, n) = (1 + a)^n$ where a and n are positive.

(a) Behavior of f(a, n) for constant a or n

For constant *a* how does f(a, n) behave as $n \to \infty$? When *a* is constant, 1 + a > 1 since *a* was assumed positive. So $f(a, n) = (1 + a)^n \to \infty$ as $n \to \infty$.

For constant *n* how does f(a, n) behave as $a \to 0$? As $a \to 0$, $1 + a \to 1$. So for constant *n*, $f(a, n) = (1 + a)^n \to 1$ as $a \to 0$.

Defining $a_n = \sqrt[n]{L + \frac{1}{n} - 1}$, then a_n is a sequence of positive values, and furthermore

$$f(a_n, n) = (1 + a_n)^n = \left(1 + \left(\sqrt[n]{L + \frac{1}{n}} - 1\right)\right)^n = \left(\sqrt[n]{L + \frac{1}{n}}\right)^n = L + \frac{1}{n}$$

so that $f(a_n, n) \to L$ as $n \to \infty$.

(a) $f(x) = x \sin x$

For any $x \in [0, \infty)$ and $h \in \mathbb{R}$ we have that

$$\begin{aligned} |(x+h)\sin(x+h) - x\sin x| &= |h\sin(x+h) + x\sin(x+h) - x\sin x| \\ &= |h\sin(x+h) + x(\sin x\cos h + \sin h\cos x) - x\sin x| \\ &= |h\sin(x+h) + x(\sin x\cos h + \sin h\cos x - \sin x)| \end{aligned}$$

For a fixed h, $h\sin(x+h)$ is bounded, but $x(\sin x \cos h + \sin h \cos x - \sin x)$ gets arbitrarily large as x gets large. Thus no matter how small h is, we can find x large enough so that $|h\sin(x+h) + x(\sin x \cos h + \sin h \cos x - \sin x)|$, and therefore $|(x+h)\sin(x+h) - x\sin x|$, can be made arbitrarily large. Hence there is no way for $f(x) = x \sin x$ to be uniformly continuous on $[0, \infty)$.

(b) $f(x) = e^x$

For any $x \in [0, \infty)$ and $h \in \mathbb{R}$ we have that

$$|e^{x+h} - e^x| = |e^x(e^h - 1)|$$

so no matter the value of h, $|e^{x}(e^{h}-1)|$ can be made arbitrarily large, and therefore so can $|e^{x+h}-e^{x}|$. Hence e^{x} cannot be uniformly continuous on $[0,\infty)$

(c)
$$f(x) = \frac{1}{1+x}$$

For any $\varepsilon > 0$, set $\delta = \varepsilon$. Thus for any $x, y \in [0, \infty$ when $|y - x| < \delta$ we have

$$\left|\frac{1}{1+y} - \frac{1}{1+x}\right| = \left|\frac{(1+y) - (1+x)}{(1+y)(1+x)}\right| = \frac{|y-x|}{|(1+y)(1+x)|}$$

Since $x, y \in [0, \infty)$ then $1 + y \ge 1$ and $1 + x \ge 1$ which implies

$$\left|\frac{1}{1+y} - \frac{1}{1+x}\right| = \frac{|y-x|}{|(1+y)(1+x)|} \le |y-x| < \delta = \varepsilon$$

so that f(x) is uniformly continuous on $[0,\infty)$

Let $\varepsilon > 0$ and $x \in [0, \infty)$. Define $\delta = \varepsilon \sqrt{x}$ so that in particular $\varepsilon = \frac{\delta}{\sqrt{x}}$. Then for any $y \ge 0$ such that $|x - y| < \delta$ we have

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{|\sqrt{x} + \sqrt{y}|} \le \frac{|x - y|}{\sqrt{x}} < \frac{\delta}{\sqrt{x}} = \varepsilon$$

indicating that f is continuous at x.

Is the function uniformly continuous? Yes. First note that because f is continuous, as per above, then because [0,1] is compact in \mathbb{R} f is uniformly continuous on [0,1]. Furthermore, for any $x, y \in [1,\infty), \sqrt{y} + \sqrt{x} \ge 1$. Therefore for any $\varepsilon > 0$, setting $\delta = \varepsilon$ means that when $|y - x| < \delta$ we have

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{|\sqrt{x} + \sqrt{y}|} \le |x - y| < \delta = \varepsilon$$

so that f is uniformly continuous on $[1, \infty)$.

Finally for any $\varepsilon > 0$, define $\delta = \min(\delta^-, \delta^+)$ where δ^- is such that $|x - y| < \delta^- \Rightarrow |\sqrt{x} - \sqrt{y}| < \frac{\varepsilon}{2}$ for all $x, y \in [0, 1]$ and δ^+ is such that $|x - y| < \delta^+ \Rightarrow |\sqrt{x} - \sqrt{y}| < \frac{\varepsilon}{2}$ for all $x, y \in [1, \infty)$. Thus with this definition, whether $x, y \in [0, 1]$ or $x, y \in [1, \infty)$, $|x - y| < \delta$ will imply $|\sqrt{x} - \sqrt{y}| < \epsilon$.

It remains to be seen that $|x - y| < \delta$ implies $|\sqrt{x} - \sqrt{y}| < \epsilon$ when $x \in [0, 1]$ and $y \in [1, \infty)$. This nevertheless holds, since for $x \in [0, 1]$ and $y \in [1, \infty)$, $|x - y| < \delta$ implies both $|x - 1| < \delta < \delta^-$ and $|y - 1| < \delta < \delta^+$. These two equations in turn imply $|\sqrt{x} - \sqrt{1}| < \frac{\varepsilon}{2}$ and $|\sqrt{y} - \sqrt{1}| < \frac{\varepsilon}{2}$. Hence we obtain

$$|\sqrt{x} - \sqrt{y}| = |\sqrt{x} - 1| + |\sqrt{y} - 1| = |\sqrt{x} - \sqrt{1}| + |\sqrt{y} - \sqrt{1}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Therefore f is uniformly continous on all of $[0, \infty)$.

9

(a) Prove [0,1] and \mathbb{R} are not homeomorphic.

Since [0,1] is compact but \mathbb{R} is not, there exists no continuous function from [0,1] to \mathbb{R} . Thus there exists no homeomorphism between them either.

(b) Prove \mathbb{R} and $(0, \infty)$ are homeomorphic.

The function $f : \mathbb{R} \to (0, \infty)$ defined by $f(x) = e^x$ is both bijective and continuous, and thus is a homeomorphism between the two sets.

(c) Prove \mathbb{R}^2 and $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ are homeomorphic.

Since $f(x) = e^x$ is a homeomorphism from $\mathbb{R} \to (0, \infty)$ then the function $g : \mathbb{R}^2 \to \{(x, y) \in \mathbb{R}^2 : y > 0\}$ defined by

 $g((x,y)) = (x,e^y)$

will also be a homeomorphism.

The map $f: (-1,1) \to \mathbb{R}$ is continuous since its composed of the quotient, product, and difference of continuous functions. It's injective, because

$$\frac{x}{x^2 - 1} = \frac{y}{y^2 - 1}$$

$$x(y^2 - 1) = y(x^2 - 1)$$

$$xy^2 - x = yx^2 - y$$

$$xy^2 + y = yx^2 + x$$

$$y(xy + 1) = x(yx + 1)$$

$$y = x$$

It's surjective because for any $y \in \mathbb{R}$, if it were to be true that

$$y = \frac{x}{x^2 - 1}$$

then we'd have

$$yx^2 - x - y = 0$$

and the quadratic formula yields

$$x = \frac{1+\sqrt{1+4y^2}}{2y}$$

as one of the roots. Thus because

$$\frac{1+\sqrt{1+4y^2}}{2y} < \frac{\sqrt{1+4y^2}}{2y} < \frac{\sqrt{4y^2}}{2y} = \frac{2y}{2y} = 1$$

then we have a solution for x < 1. Thus f is a homeomorphism.

10

Let

$$f(x) = \begin{cases} x \sin(1/x) & x \neq 0\\ 0 & \text{otherwise} \end{cases}$$

(a) Show that f is continuous on \mathbb{R}

The function f is the composition and product of functions x, $\sin x$, and 1/x, which are all continuous at nonzero reals. Therefore f is continuous at all nonzero reals. It remains to be shown that f is continuous at zero.

Let $\varepsilon > 0$ and set $\delta = \varepsilon$. The for $|x| < \delta$ we have

$$x\sin(1/x) - f(0)| = |x\sin(1/x) - 0| = |x\sin(1/x)| \le |x| < \delta = \varepsilon$$

so that f is continuous at zero.

(b) Is f uniformly continous on $[0, 2\pi]$?

Yes, f is continous on $[0, 2\pi]$ and $[0, 2\pi]$ is compact.

(c)

(a)

(b)

12 Show a continuous real-valued function f that has f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ must be f(x) = cx for some c.

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and have that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Put c = f(1). Then for integer $n, f(n) = f(1) + f(n-1) = f(1) + \dots + f(1) = nf(1) = nc$. Thus for any rational n/m we have

$$mf(n/m) = f(n/m) + \dots + f(n/m) = f(m(n/m)) = f(n) = nc$$

so that f(n/m) = (n/m)c. Thus any rational $q \in \mathbb{Q}$ has f(q) = qc. With this, we finally have that for $x \in \mathbb{R}$ and a rational sequence $\{a_n\}$ with $a_n \to r$, the continuity of f yields

$$f(r) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} a_n = cr$$

as desired.

13

Let $E \subset \mathbb{R}$ be a set and $f : E \to \mathbb{R}$ be uniformly continuous.

(a) Show that if E is bounded, then so is f(E)

Lemma 13.1. If $E \subset X$ is a bounded set, then so is its closure, \overline{E} .

Proof. Let E be a bounded subset of a metric space X, and x, y two points of its closure, E. If $x, y \in E$, then there's nothing to prove since E is already bounded. We must address two remaining case:

- 1. when one of x and y is a limit point not in E and the other a point of E
- 2. when both x and y are limit points not in E

Assume the first, and without loss of generality, let $x \in E$ and y be a limit point of E. Then any open ball centered at y, say $B_1(y)$, contains some point of $\overline{x} \in E$. Thus $d(x, y) \leq d(x, \overline{x}) + d(\overline{x}, y) < M + 1$ where M is a bound for the set E. Hence the distance between any point of E and a limit point is bounded.

Now assume the second case above. By the previous paragraph we have $d(x, y) \le d(x, z) + d(z, y) < 2(M + 1)$ for any $z \in E$. So in this case, the distance is bounded.

Hence we have that the closure of E is bounded.

Let $E \subset \mathbb{R}$ be a bounded set. Then the closure, \overline{E} , is also bounded by the above lemma. Hence it's closed and bounded, implying that it's compact as a subset of \mathbb{R} . Therefore, the set $f(\overline{E})$ is also compact since f is continuous. Thus $f(\overline{E})$ is bounded since it's a subset of \mathbb{R} . But because $E \subset \overline{E}$, then $f(E) \subset f(\overline{E})$, and so f(E) must also be bounded.

(b) If E is not bounded, give an example showing f(E) might not be bounded.

Let $E = (0, \infty)$ and f(x) = x. Then f is uniformly continuous, E is not bounded, and $f(E) = (0, \infty)$ which is also not bounded.