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1 Prove cosx and sinx are continuous for all x ∈ R

cosx is continuous: Let x ∈ R For any |h| we have

| cos(x+ h)− cosx| = | cosx cosh− sinh sinx− cosx|
= | cosx(cosh− 1) + sinh(− sinx)|
≤ | cosx(cosh− 1)|+ | sinh(− sinx)|
≤ | cosh− 1|+ | sinh|

where the last inequality comes from the fact that −1 ≤ − sinx ≤ 1 and −1 ≤ cosx ≤ 1 for all values of x. Now, as
h→ 0, cosh→ 1 and sinh→ 0. This implies the last line in the equation above approaches zero as h→ 0. Thus,
for any ε > 0 we can find a small enough δ so that for |h| < δ | sin(x+ h)− sinx| < ε. Hence sinx is continuous at
x.

sinx is continuous: Let x ∈ R For any |h| we have

| sin(x+ h)− sinx| = | sinx cosh+ sinh cosx− sinx|
= | sinx(cosh− 1) + sinh cosx|
≤ | sinx(cosh− 1)|+ | sinh cosx|
≤ | cosh− 1|+ | sinh|

where the last inequality comes from the fact that −1 ≤ sinx ≤ 1 and −1 ≤ cosx ≤ 1 for all values of x. Like we
saw in the previous paragraph, the last line of the above equation can be made arbitrarily close to zero as h → 0.
Hence, similar to what we saw in the previous paragraph, cosx is continuous at x.

2

Let f(x) = x2 + 4x and 0 < ε < 4. Define δ = ε
5 . Then 0 < δ < 1, given the constraints on ε. Assume that |x| < δ,

so that 0 < |x| < δ < 1, in particular 0 < |x|2 < |x| < 1. With this and the triangle inequality, we then have

|f(x)| = |x2 + 4x| ≤ |x2|+ |4x| = |x|2 + 4|x| < |x|+ 4|x| = 5|x| < 5δ = ε

as desired.

3 Prove the existence of an x ∈ [1, 2] such that x5 + 2x+ 5 = x5 + 10

Put f(x) = x5 + 2x + 5 and g(x) = x5 + 10. Being polynomials, f and g are both continuous. Therefore the
intermediate value theorem implies that on the interval [1, 2] f will take on every value between f(1) = 8 and
f(2) = 41 and g will take on every value between g(1) = 11 and g(2) = 26. Since f(1) = 8 < 11 = g(1) and
g(2) = 26 < 41 = f(2), f and g must therefore intersect on the interval [1, 2]. Hence there’s a point x on [1, 2] with
f(x) = g(x), i.e. where x5 + 2x+ 5 = x5 + 10.
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4 Show there exists two diametrically opposite points on the Eath’s
equator that have the same temperature.

We’ll use the 3-dimensional cartesian coordinate system and orient the earth so that the z-axis contains the earth’s
axis of rotation, the north pole has a positive z coordinate, and the center of the earth is at the orgin. Then the
equator will be contained in the xy-plane. Finally, we will denote, by pθ for θ ∈ R≥0, the point on the equator that
is intersected by the line through the origin and (cos θ, sin θ, 0).

Now let T : R≥0 → R be the function whose value at θ ∈ R≥0 is the temperature of pθ. We will assume that
this temperature function is continuous. Define the function D : R≥0 → R by D(θ) = T (θ)− T (θ+ π), i.e. it is the
difference in temperature of pθ and its diametrically opposite point, pθ+π. Since D is made up of the composition
and difference of continuous functions, then it too is continuous.

Let pθ be a point on the equator that doesn’t have the same temperature as its diametric opposite (there must
be such a point, otherwise there would be nothing to prove as all points diametrically opposite would have the
same temperature). Then D(θ) = −D(θ + π) and neither values are zero. Without loss of generality, assume that
D(θ) < 0 < D(θ + π). Since D is continuous and it’s domain, R≥0, is connected, then this and the intermediate
value theorem implies that there is a θ′ ∈ (θ, θ + π) such that D(θ′) = 0. But this implies that T (θ′) = T (θ′ + π),
i.e. the diametrically opposed points pθ′ and pθ′+π have the same temperature.

5

Define {an} and {bn} by an = −1/n and bn = 1/n. Then of course both sequences converge to zero. Then the
function f : R→ R defined as

f =

{
0 x ≤ 0
1
x otherwise

has the desired property of f(an)→ 0 and f(bn) being unbounded.

Does there exist such a function that’s continuous at x = 0 This is not possible as it would contradict
Rudin’s Theorem 4.2.

6

Let f(a, n) = (1 + a)n where a and n are positive.

(a) Behavior of f(a, n) for constant a or n

For constant a how does f(a, n) behave as n → ∞? When a is constant, 1 + a > 1 since a was assumed
positive. So f(a, n) = (1 + a)n →∞ as n→∞.

For constant n how does f(a, n) behave as a → 0? As a → 0, 1 + a → 1. So for constant n, f(a, n) =
(1 + a)n → 1 as a→ 0.

(b)

Defining an = n

√
L+ 1

n − 1, then an is a sequence of positive values, and furthermore

f(an, n) = (1 + an)n =

(
1 +

(
n

√
L+

1

n
− 1

))n
=

(
n

√
L+

1

n

)n
= L+

1

n

so that f(an, n)→ L as n→∞.
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7 Which of the following functions are uniformly continuous on [0,∞)

(a) f(x) = x sinx

For any x ∈ [0,∞) and h ∈ R we have that

|(x+ h) sin(x+ h)− x sinx| = |h sin(x+ h) + x sin(x+ h)− x sinx|
= |h sin(x+ h) + x(sinx cosh+ sinh cosx)− x sinx|
= |h sin(x+ h) + x(sinx cosh+ sinh cosx− sinx)|

For a fixed h, h sin(x + h) is bounded, but x(sinx cosh + sinh cosx − sinx) gets arbitrarily large as x gets large.
Thus no matter how small h is, we can find x large enough so that |h sin(x+h) +x(sinx cosh+ sinh cosx− sinx)|,
and therefore |(x+ h) sin(x+ h)− x sinx|, can be made arbitrarily large. Hence there is no way for f(x) = x sinx
to be uniformly continuous on [0,∞).

(b) f(x) = ex

For any x ∈ [0,∞) and h ∈ R we have that

|ex+h − ex| = |ex(eh − 1)|

so no matter the value of h, |ex(eh − 1)| can be made arbitrarily large, and therefore so can |ex+h − ex|. Hence ex

cannot be uniformly continuous on [0,∞)

(c) f(x) = 1
1+x

For any ε > 0, set δ = ε. Thus for any x, y ∈ [0,∞ when |y − x| < δ we have∣∣∣∣ 1

1 + y
− 1

1 + x

∣∣∣∣ =

∣∣∣∣ (1 + y)− (1 + x)

(1 + y)(1 + x)

∣∣∣∣ =
|y − x|

|(1 + y)(1 + x)|

Since x, y ∈ [0,∞) then 1 + y ≥ 1 and 1 + x ≥ 1 which implies∣∣∣∣ 1

1 + y
− 1

1 + x

∣∣∣∣ =
|y − x|

|(1 + y)(1 + x)|
≤ |y − x| < δ = ε

so that f(x) is uniformly continuous on [0,∞)
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8 Show that f(x) =
√
x is continuous ∀x ≥ 0

Let ε > 0 and x ∈ [0,∞). Define δ = ε
√
x so that in particular ε = δ√

x
. Then for any y ≥ 0 such that |x− y| < δ

we have

|f(x)− f(y)| = |
√
x−√y| = |x− y|

|
√
x+
√
y|
≤ |x− y|√

x
<

δ√
x

= ε

indicating that f is continuous at x.

Is the function uniformly continuous? Yes. First note that because f is continous, as per above, then because
[0, 1] is compact in R f is uniformly continuous on [0, 1]. Furthermore, for any x, y ∈ [1,∞),

√
y+
√
x ≥ 1. Therefore

for any ε > 0, setting δ = ε means that when |y − x| < δ we have

|
√
x−√y| = |x− y|

|
√
x+
√
y|
≤ |x− y| < δ = ε

so that f is uniformly continuous on [1,∞).
Finally for any ε > 0, define δ = min(δ−, δ+) where δ− is such that |x − y| < δ− ⇒ |

√
x − √y| < ε

2 for all
x, y ∈ [0, 1] and δ+ is such that |x − y| < δ+ ⇒ |

√
x − √y| < ε

2 for all x, y ∈ [1,∞). Thus with this definition,
whether x, y ∈ [0, 1] or x, y ∈ [1,∞), |x− y| < δ will imply |

√
x−√y| < ε.

It remains to be seen that |x− y| < δ implies |
√
x−√y| < ε when x ∈ [0, 1] and y ∈ [1,∞). This nevertheless

holds, since for x ∈ [0, 1] and y ∈ [1,∞), |x− y| < δ implies both |x− 1| < δ < δ− and |y− 1| < δ < δ+. These two
equations in turn imply |

√
x−
√

1| < ε
2 and |√y −

√
1| < ε

2 . Hence we obtain

|
√
x−√y| = |

√
x− 1|+ |√y − 1| = |

√
x−
√

1|+ |√y −
√

1| < ε

2
+
ε

2
= ε

Therefore f is uniformly continous on all of [0,∞).

9

(a) Prove [0, 1] and R are not homeomorphic.

Since [0, 1] is compact but R is not, there exists no continuous function from [0, 1] to R. Thus there exists no
homeomorphism between them either.

(b) Prove R and (0,∞) are homeomorphic.

The function f : R→ (0,∞) defined by f(x) = ex is both bijective and continuous, and thus is a homeomorphism
between the two sets.

(c) Prove R2 and {(x, y) ∈ R2 : y > 0} are homeomorphic.

Since f(x) = ex is a homeomorphism from R→ (0,∞) then the function g : R2 → {(x, y) ∈ R2 : y > 0} defined by

g((x, y)) = (x, ey)

will also be a homeomorphism.
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(d) Prove R and (−1, 1) are homeomorphic.

The map f : (−1, 1) → R is continuous since its composed of the quotient, product, and difference of continuous
functions. It’s injective, because

x

x2 − 1
=

y

y2 − 1

x(y2 − 1) = y(x2 − 1)

xy2 − x = yx2 − y
xy2 + y = yx2 + x

y(xy + 1) = x(yx+ 1)

y = x

It’s surjective because for any y ∈ R, if it were to be true that

y =
x

x2 − 1

then we’d have
yx2 − x− y = 0

and the quadratic formula yields

x =
1 +

√
1 + 4y2

2y

as one of the roots. Thus because

1 +
√

1 + 4y2

2y
<

√
1 + 4y2

2y
<

√
4y2

2y
=

2y

2y
= 1

then we have a solution for x < 1. Thus f is a homeomorphism.

10

Let

f(x) =

{
x sin(1/x) x 6= 0
0 otherwise

(a) Show that f is continuous on R

The function f is the composition and product of functions x, sinx, and 1/x, which are all continuous at nonzero
reals. Therefore f is continuous at all nonzero reals. It remains to be shown that f is continuous at zero.

Let ε > 0 and set δ = ε. The for |x| < δ we have

|x sin(1/x)− f(0)| = |x sin(1/x)− 0| = |x sin(1/x)| ≤ |x| < δ = ε

so that f is continuous at zero.

(b) Is f uniformly continous on [0, 2π]?

Yes, f is continous on [0, 2π] and [0, 2π] is compact.

(c)
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11

(a)

(b)

12 Show a continuous real-valued function f that has f(x + y) =
f(x) + f(y) for all x, y ∈ R must be f(x) = cx for some c.

Let f : R→ R be continuous and have that f(x+ y) = f(x) + f(y) for all x, y ∈ R. Put c = f(1). Then for integer
n, f(n) = f(1) + f(n− 1) = f(1) + · · ·+ f(1) = nf(1) = nc. Thus for any rational n/m we have

mf(n/m) = f(n/m) + · · ·+ f(n/m) = f(m(n/m)) = f(n) = nc

so that f(n/m) = (n/m)c. Thus any rational q ∈ Q has f(q) = qc. With this, we finally have that for x ∈ R and a
rational sequence {an} with an → r, the continuity of f yields

f(r) = lim
n→∞

f(an) = lim
n→∞

(can) = c lim
n→∞

an = cr

as desired.

13

Let E ⊂ R be a set and f : E → R be uniformly continuous.

(a) Show that if E is bounded, then so is f(E)

Lemma 13.1. If E ⊂ X is a bounded set, then so is its closure, E.

Proof. Let E be a bounded subset of a metric space X, and x, y two points of its closure, E. If x, y ∈ E, then
there’s nothing to prove since E is already bounded. We must address two remaining case:

1. when one of x and y is a limit point not in E and the other a point of E

2. when both x and y are limit points not in E

Assume the first, and without loss of generality, let x ∈ E and y be a limit point of E. Then any open ball centered
at y, say B1(y), contains some point of x ∈ E. Thus d(x, y) ≤ d(x, x) + d(x, y) < M + 1 where M is a bound for
the set E. Hence the distance between any point of E and a limit point is bounded.

Now assume the second case above. By the previous paragraph we have d(x, y) ≤ d(x, z) + d(z, y) < 2(M + 1)
for any z ∈ E. So in this case, the distance is bounded.

Hence we have that the closure of E is bounded.

Let E ⊂ R be a bounded set. Then the closure, E, is also bounded by the above lemma. Hence it’s closed and
bounded, implying that it’s compact as a subset of R. Therefore, the set f(E) is also compact since f is continuous.
Thus f(E) is bounded since it’s a subset of R. But because E ⊂ E, then f(E) ⊂ f(E), and so f(E) must also be
bounded.

Rush 6



(b) If E is not bounded, give an example showing f(E) might not be bounded.

Let E = (0,∞) and f(x) = x. Then f is uniformly continuous, E is not bounded, and f(E) = (0,∞) which is also
not bounded.

14
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