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1 Prove cosx and sin x are continuous for all x € R

cos x is continuous: Let 2 € R For any |h| we have

|cos(x + h) —cosx| = |coszcosh —sinhsinz — cosz|

| cos z(cos h — 1) 4 sin h(—sin )|
|cosz(cosh — 1)| + | sin h(—sin )|

<
< |cosh — 1|+ |sinh|

where the last inequality comes from the fact that —1 < —sinz < 1 and —1 < cosx < 1 for all values of . Now, as
h — 0, cosh — 1 and sinh — 0. This implies the last line in the equation above approaches zero as h — 0. Thus,
for any € > 0 we can find a small enough ¢ so that for |h| < ¢ |sin(z + h) —sinz| < e. Hence sinz is continuous at
T.

sinx is continuous: Let 2 € R For any |h| we have

|sin(z + h) —sinz| = |sinxzcosh + sinhcosz — sinz|

|sinz(cosh — 1) + sin h cos z|
|sinz(cos h — 1)| + | sin h cos z|
|cosh — 1] + | sin A

IAIA

where the last inequality comes from the fact that —1 < sinx <1 and —1 < cosx < 1 for all values of z. Like we
saw in the previous paragraph, the last line of the above equation can be made arbitrarily close to zero as h — 0.
Hence, similar to what we saw in the previous paragraph, cosx is continuous at x.

2

Let f(z) = 2% + 42 and 0 < € < 4. Define § = £. Then 0 < § < 1, given the constraints on . Assume that |z| < 6,

5.

so that 0 < |z| < d < 1, in particular 0 < |z|> < || < 1. With this and the triangle inequality, we then have
|f(2)] = |2% + 4| < |22 + 42| = |2|* + 4]|z] < |2| + 4|z| = 5|z| < 5 = ¢

as desired.

3 Prove the existence of an = € [1, 2] such that % + 2x + 5 = z° + 10

Put f(z) = 2% + 2o + 5 and g(x) = 2° + 10. Being polynomials, f and g are both continuous. Therefore the
intermediate value theorem implies that on the interval [1,2] f will take on every value between f(1) = 8 and
f(2) = 41 and g will take on every value between g(1) = 11 and g(2) = 26. Since f(1) = 8 < 11 = ¢(1) and
9(2) =26 < 41 = f(2), f and g must therefore intersect on the interval [1, 2]. Hence there’s a point = on [1, 2] with
f(x) = g(x), i.e. where 2° + 22 + 5 = a° + 10.
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4 Show there exists two diametrically opposite points on the Eath’s
equator that have the same temperature.

We’ll use the 3-dimensional cartesian coordinate system and orient the earth so that the z-axis contains the earth’s
axis of rotation, the north pole has a positive z coordinate, and the center of the earth is at the orgin. Then the
equator will be contained in the xy-plane. Finally, we will denote, by pg for 8 € R, the point on the equator that
is intersected by the line through the origin and (cos,sin 6, 0).

Now let T': R>¢o — R be the function whose value at 8 € R>( is the temperature of pg. We will assume that
this temperature function is continuous. Define the function D : R>¢g — R by D(0) = T(0) — T'(8 + 7), i.e. it is the
difference in temperature of py and its diametrically opposite point, pgi .. Since D is made up of the composition
and difference of continuous functions, then it too is continuous.

Let pp be a point on the equator that doesn’t have the same temperature as its diametric opposite (there must
be such a point, otherwise there would be nothing to prove as all points diametrically opposite would have the
same temperature). Then D(0) = —D(0 + m) and neither values are zero. Without loss of generality, assume that
D(#) < 0 < D(6 + 7). Since D is continuous and it’s domain, R, is connected, then this and the intermediate
value theorem implies that there is a 6 € (0,60 + m) such that D(6") = 0. But this implies that T'(0") = T(0' + 7),
i.e. the diametrically opposed points pg: and pg 4, have the same temperature.

5

Define {a,} and {b,} by a, = —1/n and b, = 1/n. Then of course both sequences converge to zero. Then the
function f : R — R defined as
_J 0 z<0
f _{ % otherwise

has the desired property of f(a,) — 0 and f(b,) being unbounded.

Does there exist such a function that’s continuous at = 0 This is not possible as it would contradict
Rudin’s Theorem 4.2.

6

Let f(a,n) = (1 4+ a)™ where a and n are positive.

(a) Behavior of f(a,n) for constant a or n

For constant a how does f(a,n) behave as n — co? When « is constant, 1 + a > 1 since a was assumed
positive. So f(a,n) = (14 a)™ = 00 as n — oo.

For constant n how does f(a,n) behave as a — 0?7 Asa — 0, 14+ a — 1. So for constant n, f(a,n) =
(I+a)—>1lasa—0.

(b)

Defining a,, = {/L + % — 1, then a,, is a sequence of positive values, and furthermore

Flanm) = (1 -+ a)" = <1+ (H—l)) _ <\/L+7i> 4l

so that f(an,n) — L as n — oo.
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7 Which of the following functions are uniformly continuous on [0, c0)

(a) f(x) =xsinzx

For any z € [0,00) and h € R we have that

|(x + h)sin(x + h) —zsinz| = |hsin(z + h) + xsin(z + h) — zsin z|
= |hsin(z + h) + z(sinx cos h + sin h cos ) —  sin 7|
= |hsin(z + h) + z(sinx cos h + sin h cos z — sin x)|
For a fixed h, hsin(xz + h) is bounded, but z(sinz cosh + sin hcosx — sinx) gets arbitrarily large as z gets large.
Thus no matter how small h is, we can find z large enough so that |hsin(z + h) + x(sin 2 cos h + sin h cos z — sin z)|,

and therefore |(x + h)sin(x 4+ h) — xsinz|, can be made arbitrarily large. Hence there is no way for f(z) = zsinz
to be uniformly continuous on [0, co).

(b) f(x)=e"

For any = € [0,00) and h € R we have that
" —e?| = |e"(e" — 1)

so no matter the value of h, |e*(e” — 1)| can be made arbitrarily large, and therefore so can |e?T" — e*|. Hence e®
cannot be uniformly continuous on [0, o)

() f() =1

For any € > 0, set § = e. Thus for any x,y € [0,00 when |y — x| < § we have

‘ 1 1 _’(Hy)(lﬂ) ly — |

l+y 1+z| | QA+y+2) | [(1+y)(1+2)

Since x,y € [0,00) then 1 +y > 1 and 1+ 2 > 1 which implies

ly — x|
= <ly—z|<d=c¢
eI

1 1
14y 1+=2

so that f(z) is uniformly continuous on [0, c0)
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8 Show that f(x) = /x is continuous Vx > 0

Let e > 0 and z € [0,00). Define 6 = e4/x so that in particular ¢ = %. Then for any y > 0 such that |z —y| < §
we have

B _ oz lz—yl 0 _
|f(x) = fy)| = [Vz — NN R <\/§

9

indicating that f is continuous at x.

Is the function uniformly continuous? Yes. First note that because f is continous, as per above, then because
[0, 1] is compact in R f is uniformly continuous on [0, 1]. Furthermore, for any z,y € [1,00), \/y++/z > 1. Therefore
for any € > 0, setting § = ¢ means that when |y — 2| < § we have

|z — y|
We— gl = eI <z —y|<d=c¢
vy IV + /Yl

so that f is uniformly continuous on [1, c0).

Finally for any € > 0, define § = min(6~,6") where 6~ is such that [z —y| < = = [z — /y| < § for all
z,y € [0,1] and 67 is such that |z —y| < 6 = |\/z — \/y| < § for all 2,y € [1,00). Thus with this definition,
whether z,y € [0,1] or z,y € [1,00), |z — y| < § will imply [z — /| <e.

It remains to be seen that |z — y| < ¢ implies [/z — /y| < € when = € [0,1] and y € [1,00). This nevertheless
holds, since for z € [0,1] and y € [1,0), |z — y| < & implies both |z —1| < d < 4§~ and |y — 1| < § < §+. These two
equations in turn imply |z — V1| < § and |/ — V1| < §. Hence we obtain

Ve = Vil = Ve -1+ Vi -1 = Ve = VIl + VG- VI < S+5 ==

Therefore f is uniformly continous on all of [0, 00).

9

(a) Prove [0,1] and R are not homeomorphic.

Since [0,1] is compact but R is not, there exists no continuous function from [0,1] to R. Thus there exists no
homeomorphism between them either.

(b) Prove R and (0,00) are homeomorphic.

The function f : R — (0,00) defined by f(z) = €* is both bijective and continuous, and thus is a homeomorphism
between the two sets.

(c) Prove R? and {(z,y) € R? : y > 0} are homeomorphic.

Since f(z) = €® is a homeomorphism from R — (0,00) then the function g : R?> — {(z,y) € R? : y > 0} defined by

9((z,y)) = (z,¢")

will also be a homeomorphism.
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(d) Prove R and (—1,1) are homeomorphic.

The map f : (—1,1) — R is continuous since its composed of the quotient, product, and difference of continuous
functions. It’s injective, because

x _y
2—-1  y2—1
2 _ 2
w(y"—1) = y@”-1)
wy’ —x = ya® -y
ey’ +y = yattu
Yy +1) = z(yz+1)
y = @

It’s surjective because for any y € R, if it were to be true that

x
2 -1

y:

then we’d have

yr? —x—y=0

and the quadratic formula yields

1+ /1 + 4y?

2y

as one of the roots. Thus because

1+ /1 + 4y? - V14 4y? - VAR 2y

2y 2y 2y 2y

then we have a solution for z < 1. Thus f is a homeomorphism.

10

Let )
Flz) = { zsin(l/z) x#0

10 otherwise

(a) Show that f is continuous on R

The function f is the composition and product of functions x, sinz, and 1/z, which are all continuous at nonzero
reals. Therefore f is continuous at all nonzero reals. It remains to be shown that f is continuous at zero.
Let € > 0 and set ¢ = e. The for |z| < § we have

|zsin(l/z) — f(0)] = |zsin(l/z) — 0] = |zsin(l/x)| < |z| < d=¢

so that f is continuous at zero.

(b) Is f uniformly continous on [0, 27]?

Yes, f is continous on [0, 27] and [0, 27] is compact.

(c)
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11

(b)

12 Show a continuous real-valued function f that has f(x + y) =
f(x) 4+ f(y) for all z,y € R must be f(x) = cx for some c.

Let f: R — R be continuous and have that f(z+y) = f(x) + f(y) for all z,y € R. Put ¢ = f(1). Then for integer
n, f(n)=f(1)+ f(n—1)=f1)+---+ f(1) =nf(l) = nc. Thus for any rational n/m we have

mf(n/m) = f(n/m)+---+ f(n/m) = f(m(n/m)) = f(n) = nc

so that f(n/m) = (n/m)c. Thus any rational ¢ € Q has f(q) = gc. With this, we finally have that for z € R and a
rational sequence {a,} with a, — r, the continuity of f yields

f(r)= lim f(a,)= lim (cay)=c lim a, = cr

n— oo n—oo n—oo

as desired.

13

Let £ C R be a set and f: E — R be uniformly continuous.

(a) Show that if E is bounded, then so is f(FE)

Lemma 13.1. If E C X is a bounded set, then so is its closure, E.

Proof. Let E be a bounded subset of a metric space X, and z,y two points of its closure, E. If z,y € E, then
there’s nothing to prove since F is already bounded. We must address two remaining case:

1. when one of z and y is a limit point not in E and the other a point of F
2. when both x and y are limit points not in F

Assume the first, and without loss of generality, let € E and y be a limit point of . Then any open ball centered
at y, say Bi(y), contains some point of T € E. Thus d(z,y) < d(z,Z) + d(Z,y) < M + 1 where M is a bound for
the set E. Hence the distance between any point of F and a limit point is bounded.

Now assume the second case above. By the previous paragraph we have d(x,y) < d(z,z) + d(z,y) < 2(M + 1)
for any z € E. So in this case, the distance is bounded.

Hence we have that the closure of E is bounded. O

Let E C R be a bounded set. Then the closure, E, is also bounded by the above lemma. Hence it’s closed and
bounded, implying that it’s compact as a subset of R. Therefore, the set f (F) is also compact since f is continuous.
Thus f(E) is bounded since it’s a subset of R. But because E C E, then f(E) C f(F), and so f(E) must also be
bounded.
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(b) If E is not bounded, give an example showing f(E) might not be bounded.

Let £ = (0,00) and f(z) = x. Then f is uniformly continuous, F is not bounded, and f(E) = (0, c0) which is also

not bounded.

14
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