Math 508: Advanced Analysis Homework 7

Lawrence Tyler Rush <me@tylerlogic.com>

November 1, 2014 http://coursework.tylerlogic.com/courses/upenn/math508/homework07

1 Prove that smooth $f : [a, \infty) \to \mathbb{R}$ with bound first derivative is uniformly continuous.

Let $f : [a, \infty) \to \mathbb{R}$ be smooth with M bound the first derivative, i.e. $|f'(x)| \leq M$. Let $\varepsilon > 0$ and set $\delta = \varepsilon/M$. Then for any $x, y \in [a, \infty)$, assuming without loss of generality that x < y, the mean value theorem informs us of a $c \in (x, y)$ such that

$$f(y) - f(x) = (y - x)f'(c)$$

Hence if $|y - x| < \delta$, we have

$$|f(y) - f(x)| = |(y - x)||f'(c)| \le |(y - x)|M < \delta M = \varepsilon$$

so that f is uniformly continuous.

$\mathbf{2}$

(a) Show that $\sin x$ is not a polynomial.

The function $\sin x$ is zero at $2\pi n$ for all integers n, i.e. it has infinitely many zeros. Polynomials have a finite amount of zeros, and so $\sin x$ cannot be a polynomial.

(b) Show that $\sin x$ cannot be a rational function.

A rational function p(x)/q(x) is zero if and only if p(x) is zero. Therefore a rational function is zero at only finitely many points, and just as we saw in the previous part of the problem, this implies sin x cannot be a rational function.

(c) If f(t+1) = f(t) for all real t, and f is not constant, show that f is not a rational function.

By way of contradiction, assume that f is a rational polynomial so that f(t) = p(t)/q(t). Fixing $t_0 \in \mathbb{R}$ and by putting $g(t) = f(t) - f(t_0)$ we have

1.
$$g(t+1) = f(t+1) - f(t_0) = f(t) + f(t_0) = g(t)$$
 so that g is periodic

2.
$$g(t) = p(t)/q(t) - f(t_0) = \frac{p(t) - f(t_0)q(t)}{q(t)}$$
 so that g is rational, and

3. $g(t_0) = f(t_0) - f(t_0) = 0$ so that g has a zero at t_0 .

Putting the above three things together informs us that g is a rational function with infinitely many zeros, but rational functions can only have a finite number of zeros; a contradiction.

(d) Show that e^x is not a rational function.

A rational function f(x) has that

$$\lim_{x \to \infty} f(x) = \pm \lim_{x \to -\infty} f(x)$$

however

$$\lim_{x \to \infty} e^x = \infty \qquad \text{and} \qquad \lim_{x \to -\infty} e^x = 0$$

Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^{\frac{1}{7}}$. Since this is a polynomial, it's smooth on \mathbb{R} . For an integer n, the mean value theorem tells us that there is an $x \in (n, n+1)$ such that

$$(n+1)^{\frac{1}{7}} - n^{\frac{1}{7}} = (n+1-n)f'(x) = f'(x)$$

which in turn yields

$$(n+1)^{\frac{1}{7}} - n^{\frac{1}{7}} = \frac{1}{7} \left(\frac{1}{x^6}\right)^{\frac{1}{7}}$$

Hence

$$\lim_{n \to \infty} (n+1)^{\frac{1}{7}} - n^{\frac{1}{7}} = \lim_{x \to \infty} \frac{1}{7} \left(\frac{1}{x^6}\right)^{\frac{1}{7}} = 0$$

as desired.

4

Let $f : \mathbb{R} \to \mathbb{R}$ be smooth with f(0) = 3, f(1) = 2, and f(3) = 8. The Mean Value Theorem yields the existence of $c_1 \in (0, 1)$ and $c_2 \in (1, 3)$ such that

$$(1-0)f'(c_1) = f(1) - f(0)$$

$$f'(c_1) = 2 - 3$$

$$f'(c_1) = -1$$

and

$$(3-1)f'(c_2) = f(3) - f(1)$$

$$2f'(c_2) = 8 - 2$$

$$2f'(c_2) = 6$$

$$f'(c_2) = 3$$

Because f is smooth, f' is continous since f'' is differentiable, and thus we can appeal to the Mean Value Theorem again to obtain a $c \in (c_1, c_2)$ such that

$$(c_2 - c_1)f''(c) = f'(c_2) - f'(c_1)$$

$$(c_2 - c_1)f''(c) = 3 - (-1)$$

$$f''(c) = \frac{4}{c_2 - c_1}$$

Since $c_2 > c_1 > 0$ this implies f''(c) > 0, as desired. Furthermore, because, more precisely, $3 > c_2 > 1 > c_1 > 0$ we have that $3 > c_2 - c_1$ so that $f''(c) > \frac{4}{3}$ according to the above equation. So let $M = \frac{4}{3}$.

 $\mathbf{5}$

By "a convex function f" we mean one for which every point of the graph of f lies above all of its tangent points; i.e. one for which

 $f'(x)(y-x) + f(x) \le f(y)$

for all $x, y \in \mathbb{R}$.

Assume that the second derivative of f is non-negative for any point of \mathbb{R} . For any reals x, y with x < y the Mean Value Theorem (MVT) gives us a $z \in (x, y)$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(z) \tag{5.1}$$

Since f is smooth, f' is differentiable on [x, z], and so the MVT gives us a $w \in (x, z)$ such that

$$\frac{f'(z) - f'(x)}{z - x} = f''(w)$$

Since the second derivative is non-negative, then so is the left hand side of the above equation. Since z > x this implies $f'(z) \ge f'(x)$ which in light of Equation 5.1 implies $\frac{f(y)-f(x)}{y-x} \ge f'(x)$. This yields

$$f'(x)(y-x) + f(x) \le f(y)$$

as desired for the convexity of f.

(b) Prove that $v(x) \leq 0$ for all $0 \leq x \leq 1$ if v''(x) > 0 for $0 \leq x \leq 1$ and v(0) = v(1) = 0

Assume for later contradiction that there is a point $x \in (0,1)$ with v(x) > 0. Then there exists a $c_1 \in (0,x)$ with

$$\frac{v(x) - v(0)}{x - 0} = v'(c_1)$$

by the MVT so that $\frac{v(x)}{x} = v'(c_1)$ which implies $v'(c_1) > 0$ since v(x) > 0. Furthermore there exists an $c_2 \in (x, 1)$ where

$$\frac{v(1) - v(x)}{1 - x} = v'(c_2)$$

so that $\frac{-v(x)}{1-x} = v'(c_2)$. Since x < 1 and v(x) > 0, then $v'(c_2) < 0$. Once more, the MVT tells us there exists a $c \in (c_1, c_2)$ such that

$$\frac{v'(c_2) - v'(c_1)}{c_2 - c_1} = v''(c)$$

but since we've seen that $v'(c_1) > 0$, $v'(c_2) < 0$, and because $c_2 > c_1$, the above equation yields $v''(c) \le 0$. This contradicts the fact that v''(x) for $0 \le x \le 1$. Hence there is no point $x \in (0,1)$ with v(x) > 0, and therefore $v(x) \le 0$ for all $x \in [0,1]$.

(c) Prove that e^x is convex.

The second derivative of e^x is e^x , which is always positive. By the first part of this problem we know that e^x is convex.

(d) Prove that $e^x \ge 1 + x$ for all x

Since the previous part of this problem showed e^x is convex, then for any x, y we have

$$e^x \ge \left(\frac{d}{dy}e^y\right)(x-y) + e^y = e^y(x-y) + e^y$$

Thus, letting y = 0, we get $e^x \ge x + 1$ for all x.

(a) What constraints are on c and d so that $p(x) = x^3 + cx + d$ has three distinct real roots?

If $p(x) = x^3 + cx + d$ were to have three distinct real roots, then there would exist real $x_1 < x_2$ where $p(x_1) > 0$ is a local maximum and $p(x_2) < 0$ is a local minimum. Since $\lim_{x \to -\infty} p(x) = -\infty$ and $\lim_{x \to \infty} p(x) = \infty$, then we can find $x_0, x_3 \in \mathbb{R}$ with $x_0 < x_1, x_3 > x_2, p(x_0) < 0$, and $p(x_3) > 0$. Thus the intermediate value theorem implies, since $x_1 < x_2, p(x_1) > 0$, and $p(x_2) < 0$, the existence of $c_1, c_2, c_3 \in \mathbb{R}$ where $x_0 < c_1 < x_1 < c_2 < x_2 < c_3 < x_3$ and $p(c_1) = p(c_2) = p(c_3) = 0$. Thus it is indeed possible for there to exist three distinct real roots.

We have that $p'(x) = 3x^2 + c$ so that $x = \pm \sqrt{\frac{-c}{3}}$ when p'(x) = 0. Hence in order for there to be three real roots, c must be less than zero. Since $x = \pm \sqrt{\frac{-c}{3}}$ are the two local maximum and minimum, then $p(\sqrt{\frac{-c}{3}}) < 0$ so that

$$p(\sqrt{\frac{-c}{3}}) < 0$$

$$\frac{-c}{3}\sqrt{\frac{-c}{3}} + c\sqrt{\frac{-c}{3}} + d < 0$$

$$d < \frac{c}{3}\sqrt{\frac{-c}{3}} - c\sqrt{\frac{-c}{3}}$$

$$d < c\sqrt{\frac{-c}{3}}\left(\frac{1}{3} - 1\right)$$

$$d < \frac{-2c}{3}\sqrt{\frac{-c}{3}}$$

At this point, since we have c < 0, then the right hand side of the above inequality is positive so that

$$d^2 < \left(\frac{-2c}{3}\sqrt{\frac{-c}{3}}\right)^2$$
$$d^2 < \frac{-4c^2}{9}\left(\frac{-c}{3}\right)$$
$$d^2 < \frac{4c^3}{27}$$

and this is the constraint on d.

(b) Generalize above to $p(x) = ax^3 + bx^2 + cx + d$

- 7
- 8

(a)

(b)	 		
(c)			
(d)			