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1 Prove that smooth f : [a,00) — R with bound first derivative is
uniformly continuous.

Let f : [a,00) — R be smooth with M bound the first derivative, i.e. |f'(z)] < M. Let € > 0 and set § = ¢/m.
Then for any z,y € [a,00), assuming without loss of generality that < y, the mean value theorem informs us of a
¢ € (z,y) such that

fly) = f(x) = (y—2)f(c)

Hence if |y — x| < §, we have

If(y) — f(@)] = |y —2)||f ()] < |(y—z)|M < M =¢

so that f is uniformly continuous.

2

(a) Show that sin x is not a polynomial.

The function sinx is zero at 2zwn for all integers n, i.e. it has infinitely many zeros. Polynomials have a finite
amount of zeros, and so sinz cannot be a polynomial.

(b) Show that sinx cannot be a rational function.

A rational function p(x)/q(x) is zero if and only if p(z) is zero. Therefore a rational function is zero at only finitely
many points, and just as we saw in the previous part of the problem, this implies sin x cannot be a rational function.

(c) If f(t+1) = f(t) for all real ¢, and f is not constant, show that f is not a rational
function.

By way of contradiction, assume that f is a rational polynomial so that f(t) = p(t)/q(t). Fixing to € R and by
putting g(t) = f(t) — f(to) we have

Logt+1)= f(t+1)— f(to) = f(t) + f(to) = g(t) so that g is periodic
2. g(t) =pt)/q(t) — f(to) = W so that g is rational, and
3. g(to) = f(to) — f(to) = 0 so that g has a zero at tg.

Putting the above three things together informs us that g is a rational function with infinitely many zeros, but
rational functions can only have a finite number of zeros; a contradiction.

(d) Show that e” is not a rational function.

A rational function f(z) has that
o5, fle) =+ L 7o)
however

lim e* = oo and lim e* =0
T—00 T——00
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3 Show that lim, . (n + 1)% —nr =0

Define f : R — R by f(z) = x7. Since this is a polynomial, it’s smooth on R. For an integer n, the mean value
theorem tells us that there is an x € (n,n + 1) such that

(n+1)7 —n7 =(n+1-n)f'(z) = f(z)

which in turn yields

Hence )
1 1 1/1\"7
Jim e 0=t = i 2 () =0
as desired.
4

Let f : R — R be smooth with f(0) =3, f(1) =2, and f(3) = 8. The Mean Value Theorem yields the existence of
c1 € (0,1) and ¢ € (1,3) such that

1 =0)f"(cr) = [f(1)— f(0)

filer) = 2-3
flla) = -1
and
B-=1f(c2) = f3)—f(QQ)
2f'(c2) = 8-2
2f/(02) = 6
f'(e2) 3

Because f is smooth, f’ is continous since f” is differentiable, and thus we can appeal to the Mean Value Theorem
again to obtain a ¢ € (¢, ¢2) such that

(c2=c1)f"(c) = flle2) = f'(er)
(c2—e))f(c) = 3-(-1)
1" 4
o) =

Co —C1

Since ¢o > ¢; > 0 this implies f”(¢) > 0, as desired. Furthermore, because, more precisely, 3 > co > 1 > ¢; > 0 we

have that 3 > ¢y — ¢1 so that f”(c) > % according to the above equation. So let M = %.

5

By “a convex function f” we mean one for which every point of the graph of f lies above all of its tangent points;
i.e. one for which

@)y —2)+ f(z) < f(y)
for all z,y € R.
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(a) Show that a smooth function f is convex if f”(x) > 0 for all x.

Assume that the second derivative of f is non-negative for any point of R. For any reals z,y with z < y the Mean
Value Theorem (MVT) gives us a z € (z,y) such that

=== f(z) (5.1)
Since f is smooth, f’ is differentiable on [z, z], and so the MVT gives us a w € (z, z) such that

f'(z) = f'(x)

Z—x

= f"(w)

Since the second derivative is non-negative, then so is the left hand side of the above equation. Since z > x this
implies f/(z) > f’(x) which in light of Equation 5.1 implies W > f'(x). This yields

f@)(y—z)+ f(z) < fy)

as desired for the convexity of f.

(b) Prove that v(z) < 0 for all 0 < = < 1 if v"(x) > 0 for 0 < = < 1 and
v(0) =v(1) =0

Assume for later contradiction that there is a point z € (0,1) with v(z) > 0. Then there exists a ¢; € (0, ) with

v(x) —v(0)

o
z—0 = v(e)

by the MVT so that 2 — ¢/(¢;) which implies v/(c;) > 0 since v(z) > 0. Furthermore there exists an ¢, € (x,1)

where o )
W =ole) _ g

so that _1%(;:) = v'(c2). Since z < 1 and v(x) > 0, then v'(cz) < 0. Once more, the MVT tells us there exists a
¢ € (c1, ¢2) such that
V() = /()

C2 —C1

="(c)
but since we’ve seen that v'(¢y) > 0, v'(¢c2) < 0, and because ¢z > ¢, the above equation yields v”(¢) < 0. This

contradicts the fact that v"’(z) for 0 < x < 1. Hence there is no point z € (0,1) with v(z) > 0, and therefore
v(z) <0 for all z € [0, 1].

(c) Prove that e” is convex.

The second derivative of e* is e®, which is always positive. By the first part of this problem we know that e® is
convex.

(d) Prove that e* > 1+ « for all =

Since the previous part of this problem showed e® is convex, then for any z,y we have
o d
e’ > d—ey (z—y)+e=e(x—y)+eY
Y

Thus, letting y = 0, we get e* >z 4 1 for all z.
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(a) What constraints are on ¢ and d so that p(xz) = x3 + cx + d has three distinct
real roots?

If p(x) = 2% + cz + d were to have three distinct real roots, then there would exist real x1 < zo where p(z1) > 0 is
a local maximum and p(z2) < 0 is a local minimum. Since lim,_, o, p(z) = —oo and lim,_,, p(z) = oo, then we
can find zg, 3 € R with zp < x1, T3 > 72, p(x9) < 0, and p(x3) > 0. Thus the intermediate value theorem implies,
since 1 < xg, p(z1) > 0, and p(z2) < 0, the existence of ¢1,ca,c3 € R where 2 < ¢1 < 21 < ¢3 < 23 < ¢3 < T3
and p(c1) = p(e2) = p(es) = 0. Thus it is indeed possible for there to exist three distinct real roots.

We have that p(z) = 3% 4 ¢ so that 2 = £,/ 3¢ when p/(x) = 0. Hence in order for there to be three real roots,

c must be less than zero. Since x = £,/ 3¢ are the two local maximum and minimum, then p(y/3¢) < 0 so that

p(\/?) < 0

;C\/?-I—C\/?-l-d <0
R
d < ¢ ;(;—1)
—9¢ [—
d < TC ?c

At this point, since we have ¢ < 0, then the right hand side of the above inequality is positive so that
) 2
—2c [—c
& < —\ =
—4c? [ —c
2 < —
- (3)
9 4¢3

< o7

and this is the constraint on d.

(b) Generalize above to p(z) = ax® + bx? + cx + d

(a)
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(b)

(c)

(d)
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