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1 Show that cos x is differentiable at all x.

For h > 0 we have

. cos(x + h) —cosx . coszcosh —sinxsinh — cosx
lim = lim
h—0 h h—0 h
., cosh—1 | . sinh
= coszlim ———— —sinz lim ——
h—0 h h—0 h
= (cosz)(0) — (sinz)(1)

= —sinz
where we make use of the trigonometric identity cos(x 4+ y) = cosz cosy — sinxsiny and the fact that

cosh—1
im— =0
h—0

and ik
sin
li =1
hli% h

2 Derivatives of matrices

Let A(t) be an n x n matrix whoose elements depend smoothly on ¢ and that is invertible at ¢.

(a) Compute the derivative of A2(t) in terms of A and A’

The derivative of A%(t) is the derivative with respect to t of each of its elements as functions of ¢. So
d

d
7 (AQ(t))Z.j == Zna,;kakj = Zn (afpar; + a,;ka;cj) = (A'A+ AA);
k=1 k=1

so that we have 4 A%(t) = A’A+ AA’. Note the multiplication of A and A’ may not commute.

(b) Show A(t) is invertible for all ¢ near t,

We know that a matrix is invertible if and only if it has nonzero determinent. Since the determinent of A is simply
the sum and product of entries of A and the entries of A depend smoothly on ¢, then det(A(t)) also depends
smoothly on ¢. Since A(tg) is invertible, then det(A(tg)) # 0, which, along with the previous sentence, implies that
there is a neighborhood of ty for which all ¢ in that neighborhood have det(A(t)) # 0.

(c) Find a formula for the derivative of A=!(t) at t,

For h > 0 we have.

lim A Mto+h)— A" (o)  _ im (A" (t0) A(to)) A" (to +h) — A" (to) (Alto + R)A™" (to + 1))
h—0 h h—0 h

= A to) Jim, Alto) — f(to 1) A7t + h)

= A*l(to) ( }ll% A(tO + h})L - A(tO)Afl(tO + h)>

= A7) (<o) (Jim Ao 1)
= —A7(to)A'(to) A" (to)
so that (A1) = —A-1A4’A"!
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(d) Find a formula for the derivative of A=2(t)

By the first part of this problem we have

LA =(ay A e (a4

which, through use of the previous part of the problem, leads to

d

Z (A7) = (CATAAT) AT H AT (CATIAATY) = - (ATAAT 1 AT AT

(a) Find the unique solution v(x) such that v = v and v(0) = ¢ for constant c.

Let v(z) be such that v = v and v(0) = c. Define u(z) = Lv(z). Then
o' (x) = =v'(2) = ~v(z) = u(w) (3.1)

and 1 )
u(0) = E’U(O) =c= 1 (3.2)

Thus, u(z) must be e* since e® is the unique function with the properties in equations 3.1 and 3.2. But then we
have e* = u(z) = 1v(z) implying v(z) = ce®.

(b) Prove that e*t* = e%® for all real a and =

Define u(z) = e**t® — e%® for real a. Then we have
u(0)=e*—e*=0

and

U (z) = " — %" = u(x)

by the previous part of this problem, u(z) = 0e® = 0. Hence e”t% = e%e”.

(c) For constant v show v’ — vv < 0 implies v(xz) < v(0)e? for ¢ > 0

Let v' — v < 0 and define g(z) = e v(x). Then we have
g =—ve v veT T =e (v —qv) <0

which implies that g is always decreasing so that in particular g(z) < g(0) for all > 0. That is to say that

g(z) < ¢(0)
e ylz) < e (0)
e o) < v(0)
v(z) < w(0)e™®

for all x > 0.
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4 Show that a continuous f : [a,b] — R can be approximated by a
piecewise linear function g : [a,b] — R

Let € > 0 be given. Because f is continuous and [a, b] is compact, then f is uniformly continuous, and we can thus
find a 6 > 0 such that

lz—yl<d = |fe)-fly)l<e (4.3)
We divide [a, b] up into chuncks of size less than §. Let n be an integer such that nd > b so that ¢ > %. Hence, each
of [a,a+0),[a+5,a+20),...,[a+(n—1)d,b), where § = b*T“, are intervals of size less than §. Define M; = sup f(z)
and m; = inf f(x) for each i € {0,1,--- ,n— 1} and x € [a +i6,a + (i + 1)6) so that in particular

M; —m;
‘f(x) — Tm <e (4.4)
for any x € [a + 45, a + (i + 1)5) by equation 4.3. Further define a set of functions ¢; : [a,b] — {0,1} by

(2) = 1 x€la+id,a+ (i+1))
PilJ =1 0 otherwise

so that we may define g : [a,b] — R by
n—1
Mi — m;
g(z) = () f(b) + ;0 %(@T

where &, is the Kronecker function. Thus for any z € [a + 45, a + (i + 1)§) we have

(@) — g(a)] = ‘f(w) Mi—mi

<
5 €

by equation 4.4 and for = b we have |f(x) — g(z)| = |f(b) — f(b)] = 0 < € as desired.

5

Let f: R — R be a smooth function.

(a) If f/(1) = f’(1) = (1) = 0 and f"””(1) > 0, show f has a local minimum at
z =1.

Let f'(1) = f"(1) = (1) = 0 and f""(1) > 0. Then there is an ¢ > 0 such that f"”/(z) > 0for z € (1 —¢,1+¢).
So if 1 < x < 1+ ¢ then repeated applications of The Fundamental Theorem of Calculus tells us
x

fle)—f(1) = f'(y) dy
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which implies f(z) > f(1). Furthermore, for any = with 1 — e < z < 1 we have again by repeated applications of
The Fundamental theorem of Calculus

flx)—f1) = — [ f(y) dy

again so that f(x) > f(1). Hence if z € (1 —e,1+¢) then f(x) > f(1) so that f(1) is a local minimum.

(b) What can be said about f near £ = 1 when f’(1) = f”(1) = 0 and f"’(1) > 0.

There is nothing that can be generally said about f since it may not be a local maximum or minimum at all.

6

Let u(x) be a smooth solution to the differential equation

" +3u — (1+2%)u=0

(a) Show that u cannot have a positive local maximum

Given the differential equation above, we have
u” 4+ 3u = (1 +2%)u
for u(z) so that at any local maximum zy where u(zg) = 0, we have
u’" = (1+x)u (6.5)

So if u(zg) is positive then u”(xg) > 0, i.e. u is convex at xg. Thus if u(xg) is positive then u can only have a local
minimum at zg.

(b) Show that u cannot have a negative local minimum

Let xo be as in the previous part of this problem. Equation 6.5 also implies that if u(z() is negative, then so is
u”(zg). Hence u can only have a negative local maximum at x.
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(c) If u(0) = u(2) = 0, show that u(x) = 0 for x € [0, 2]

If w is zero on [0, 2], then we are done. So let ¢ € (0,2) be nonzero. Either
1. u(zg) > 0 or
2. u(zg) <0

If the first case, then since u is smooth, it is bounded on [0, 2]. Thus there must be a maximum positive value of u
on [0,2]. But this contradicts the first part of this problem. This case can thus not happen.

If the second case, then since u is smooth it is bounded on [0, 2]. Thus there must be a minimum negative value
of u on [0,2]. But this contradicts the second part of this problem. Thus this case can also not happen.

Hence, the only possible scenario is u(z) = 0 for z € [0, 2].

(d)

(b)

8 Use the Reimann sum to compute fé’ sinx dx

Define a partition P, of [0,b] by P ={0,6,20,...,(n—1)0,b} where § = b/n. Then we have
U(Py,sinz) = 0(sinf + - - - + sin(nh))

and

L(P,,sinz) = 0(sin0 +sinf + - - - +sin((n — 1)0))
so that U(P,,sinx) — L(P,,sinx) = #sin(nf) which approaches zero as n — co. Thus we know that sinz is indeed
integrable.

Now to find the actual value of the integral of sinz we evaluate lim, o, U(P,,sinz). So because § = b/n we
have the following.

nl;n;o U(P,,sinz) = nli_}n;@Hisin(k@)
k=1
L cos(6/2) — cos((n +1/2)0)
fim 0 ( 25in(0/2) )

n—roo

= ( lim cos(0/2) — cos((n + 1/2)8)) <nh—>Holo 2sm?9/2)>

= (cos(0) — cos(b)) (1)
= 1— cos(b)

so that fob sinz dr =1 — cos(b)
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9 Define f(0) = 3 and f(x) = sin(1/x) for z € (0,2/x]. Show f is
Reimann integrable.

Let £ > 0 be given. Then on the interval [¢/8,27] f is continuous and therefore Reimann integrable on the interval.
Hence there exists a partition P such that U(P, f) — L(P, f) < €/2. Define a partition P’ = PU{0}. Then we have
UP', f)=U(P, f)+35 and L(P', f) = L(P, f) — ¢/8. This implies

UP,f)—LP,f)=U(Pf) +3% —L(P,f)+¢/8=¢/2+ (U(P,f) L(P,f)> <e/2+¢/2=¢

Thus f is Riemann integrable.

10

11 Prove the Integral Mean Value Theorem

Let f be real and continuous on [a,b]. Partition [a,b] by P = {a,b}. Then L(P, f) = (b—a)f(y) and U(P, f) =
(b —a)f(z) where f(y) = max(f(z)) and f(z) = min(f(z)) for « € [a,b]. Thus because

b
MRﬁg/f@wmswan

we have b
1) < 5= [ 1) do < 102

Since f is continuous on [y, z] then The Intermediate Value Theorem tells us that there is a ¢ € [y, 2] such that

b
o [ S do= 500

as desired.
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