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1 Show that cosx is differentiable at all x.

For h > 0 we have

lim
h→0

cos(x+ h)− cosx

h
= lim

h→0

cosx cosh− sinx sinh− cosx

h

= cosx lim
h→0

cosh− 1

h
− sinx lim

h→0

sinh

h
= (cosx)(0)− (sinx)(1)

= − sinx

where we make use of the trigonometric identity cos(x+ y) = cosx cos y − sinx sin y and the fact that

lim
h→0

cosh− 1

h
= 0

and

lim
h→0

sinh

h
= 1

2 Derivatives of matrices

Let A(t) be an n× n matrix whoose elements depend smoothly on t and that is invertible at t0.

(a) Compute the derivative of A2(t) in terms of A and A′

The derivative of A2(t) is the derivative with respect to t of each of its elements as functions of t. So

d

dt

(
A2(t)

)
ij

=
d

dt

∑
k=1

naikakj =
∑
k=1

n
(
a′ikakj + aika

′
kj

)
= (A′A+AA′)ij

so that we have d
dtA

2(t) = A′A+AA′. Note the multiplication of A and A′ may not commute.

(b) Show A(t) is invertible for all t near t0

We know that a matrix is invertible if and only if it has nonzero determinent. Since the determinent of A is simply
the sum and product of entries of A and the entries of A depend smoothly on t, then det(A(t)) also depends
smoothly on t. Since A(t0) is invertible, then det(A(t0)) 6= 0, which, along with the previous sentence, implies that
there is a neighborhood of t0 for which all t in that neighborhood have det(A(t)) 6= 0.

(c) Find a formula for the derivative of A−1(t) at t0

For h > 0 we have.

lim
h→0

A−1(t0 + h)−A−1(t0)

h
= lim

h→0

(
A−1(t0)A(t0)

)
A−1(t0 + h)−A−1(t0)

(
A(t0 + h)A−1(t0 + h)

)
h

= A−1(t0) lim
h→0

A(t0)−A(t0 + h)

h
A−1(t0 + h)

= A−1(t0)

(
− lim
h→0

A(t0 + h)−A(t0)

h
A−1(t0 + h)

)
= A−1(t0) (−A′(t0))

(
lim
h→0

A−1(t0 + h)

)
= −A−1(t0)A′(t0)A−1(t0)

so that
(
A−1

)′
= −A−1A′A−1
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(d) Find a formula for the derivative of A−2(t)

By the first part of this problem we have

d

dt

(
A−2

)
=
(
A−1

)′
A−1 +A−1

(
A−1

)′
which, through use of the previous part of the problem, leads to

d

dt

(
A−2

)
=
(
−A−1A′A−1

)
A−1 +A−1

(
−A−1A′A−1

)
= −

(
A−1A′A−2 +A−2A′A−1

)
3

(a) Find the unique solution v(x) such that v′ = v and v(0) = c for constant c.

Let v(x) be such that v′ = v and v(0) = c. Define u(x) = 1
cv(x). Then

u′(x) =
1

c
v′(x) =

1

c
v(x) = u(x) (3.1)

and

u(0) =
1

c
v(0) =

1

c
c = 1 (3.2)

Thus, u(x) must be ex since ex is the unique function with the properties in equations 3.1 and 3.2. But then we
have ex = u(x) = 1

cv(x) implying v(x) = cex.

(b) Prove that ex+a = eaex for all real a and x

Define u(x) = ex+a − eaex for real a. Then we have

u(0) = ea − ea = 0

and
u′(x) = ex+a − eaex = u(x)

by the previous part of this problem, u(x) = 0ex = 0. Hence ex+a = eaex.

(c) For constant γ show v′ − γv ≤ 0 implies v(x) ≤ v(0)eγx for x ≥ 0

Let v′ − γv ≤ 0 and define g(x) = e−γxv(x). Then we have

g′ = −γe−γxv + v′e−γx = e−γx (v′ − γv) ≤ 0

which implies that g is always decreasing so that in particular g(x) ≤ g(0) for all x ≥ 0. That is to say that

g(x) ≤ g(0)

e−γxv(x) ≤ e−γ0v(0)

e−γxv(x) ≤ v(0)

v(x) ≤ v(0)eγx

for all x ≥ 0.
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4 Show that a continuous f : [a, b] → R can be approximated by a
piecewise linear function g : [a, b]→ R

Let ε > 0 be given. Because f is continuous and [a, b] is compact, then f is uniformly continuous, and we can thus
find a δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε (4.3)

We divide [a, b] up into chuncks of size less than δ. Let n be an integer such that nδ > b so that δ > b
n . Hence, each

of [a, a+δ), [a+δ, a+2δ), . . . , [a+(n−1)δ, b), where δ = b−a
n , are intervals of size less than δ. Define Mi = sup f(x)

and mi = inf f(x) for each i ∈ {0, 1, · · · , n− 1} and x ∈ [a+ iδ, a+ (i+ 1)δ) so that in particular∣∣∣∣f(x)− Mi −mi

2

∣∣∣∣ < ε (4.4)

for any x ∈ [a+ iδ, a+ (i+ 1)δ) by equation 4.3. Further define a set of functions ϕi : [a, b]→ {0, 1} by

ϕi(x) =

{
1 x ∈ [a+ iδ, a+ (i+ 1)δ)
0 otherwise

so that we may define g : [a, b]→ R by

g(x) = δb(x)f(b) +

n−1∑
i=0

ϕi(x)
Mi −mi

2

where δb is the Kronecker function. Thus for any x ∈ [a+ iδ, a+ (i+ 1)δ) we have

|f(x)− g(x)| =
∣∣∣∣f(x)− Mi −mi

2

∣∣∣∣ < ε

by equation 4.4 and for x = b we have |f(x)− g(x)| = |f(b)− f(b)| = 0 < ε as desired.

5

Let f : R→ R be a smooth function.

(a) If f ′(1) = f ′′(1) = f ′′′(1) = 0 and f ′′′′(1) > 0, show f has a local minimum at
x = 1.

Let f ′(1) = f ′′(1) = f ′′′(1) = 0 and f ′′′′(1) > 0. Then there is an ε > 0 such that f ′′′′(x) > 0 for x ∈ (1− ε, 1 + ε).
So if 1 < x < 1 + ε then repeated applications of The Fundamental Theorem of Calculus tells us

f(x)− f(1) =

∫ x

1

f ′(y) dy

=

∫ x

1

f ′(y)− f ′(1) dy

=

∫ x

1

∫ y

1

f ′′(z) dzdy

=

∫ x

1

∫ y

1

f ′′(z)− f ′′(1) dzdy

=

∫ x

1

∫ y

1

∫ z

1

f ′′′(w) dwdzdy

=

∫ x

1

∫ y

1

∫ z

1

f ′′′(w)− f ′′′(1) dwdzdy

=

∫ x

1

∫ y

1

∫ z

1

∫ w

1

f ′′′′(s) dsdwdzdy

> 0
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which implies f(x) > f(1). Furthermore, for any x with 1 − ε < x < 1 we have again by repeated applications of
The Fundamental theorem of Calculus

f(x)− f(1) = −
∫ 1

x

f ′(y) dy

= −
∫ 1

x

f ′(y)− f ′(1) dy

=

∫ 1

x

∫ 1

y

f ′′(z) dzdy

=

∫ 1

x

∫ 1

y

f ′′(z)− f ′′(1) dzdy

= −
∫ 1

x

∫ 1

y

∫ 1

z

f ′′′(w) dwdzdy

= −
∫ 1

x

∫ 1

y

∫ 1

z

f ′′′(w)− f ′′′(1) dwdzdy

=

∫ 1

x

∫ 1

y

∫ 1

z

∫ 1

w

f ′′′′(s) dsdwdzdy

> 0

again so that f(x) > f(1). Hence if x ∈ (1− ε, 1 + ε) then f(x) ≥ f(1) so that f(1) is a local minimum.

(b) What can be said about f near x = 1 when f ′(1) = f ′′(1) = 0 and f ′′′(1) > 0.

There is nothing that can be generally said about f since it may not be a local maximum or minimum at all.

6

Let u(x) be a smooth solution to the differential equation

u′′ + 3u′ − (1 + x2)u = 0

(a) Show that u cannot have a positive local maximum

Given the differential equation above, we have

u′′ + 3u′ = (1 + x2)u

for u(x) so that at any local maximum x0 where u(x0) = 0, we have

u′′ = (1 + x20)u (6.5)

So if u(x0) is positive then u′′(x0) > 0 , i.e. u is convex at x0. Thus if u(x0) is positive then u can only have a local
minimum at x0.

(b) Show that u cannot have a negative local minimum

Let x0 be as in the previous part of this problem. Equation 6.5 also implies that if u(x0) is negative, then so is
u′′(x0). Hence u can only have a negative local maximum at x0.
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(c) If u(0) = u(2) = 0, show that u(x) = 0 for x ∈ [0, 2]

If u is zero on [0, 2], then we are done. So let x0 ∈ (0, 2) be nonzero. Either

1. u(x0) > 0 or

2. u(x0) < 0

If the first case, then since u is smooth, it is bounded on [0, 2]. Thus there must be a maximum positive value of u
on [0, 2]. But this contradicts the first part of this problem. This case can thus not happen.

If the second case, then since u is smooth it is bounded on [0, 2]. Thus there must be a minimum negative value
of u on [0, 2]. But this contradicts the second part of this problem. Thus this case can also not happen.

Hence, the only possible scenario is u(x) = 0 for x ∈ [0, 2].

(d)

7

(a)

(b)

8 Use the Reimann sum to compute
∫ b
0 sinx dx

Define a partition Pn of [0, b] by P = {0, θ, 2θ, . . . , (n− 1)θ, b} where θ = b/n. Then we have

U(Pn, sinx) = θ(sin θ + · · ·+ sin(nθ))

and
L(Pn, sinx) = θ(sin 0 + sin θ + · · ·+ sin((n− 1)θ))

so that U(Pn, sinx)−L(Pn, sinx) = θ sin(nθ) which approaches zero as n→∞. Thus we know that sinx is indeed
integrable.

Now to find the actual value of the integral of sinx we evaluate limn→∞ U(Pn, sinx). So because θ = b/n we
have the following.

lim
n→∞

U(Pn, sinx) = lim
n→∞

θ

n∑
k=1

sin(kθ)

= lim
n→∞

θ

(
cos(θ/2)− cos((n+ 1/2)θ)

2 sin(θ/2)

)
=

(
lim
n→∞

cos(θ/2)− cos((n+ 1/2)θ)
)(

lim
n→∞

θ

2 sin(θ/2)

)
= (cos(0)− cos(b)) (1)

= 1− cos(b)

so that
∫ b
0

sinx dx = 1− cos(b)
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9 Define f(0) = 3 and f(x) = sin(1/x) for x ∈ (0, 2/π]. Show f is
Reimann integrable.

Let ε > 0 be given. Then on the interval [ε/8, 2π] f is continuous and therefore Reimann integrable on the interval.
Hence there exists a partition P such that U(P, f)−L(P, f) < ε/2. Define a partition P ′ = P ∪{0}. Then we have
U(P ′, f) = U(P, f) + 3 ε8 and L(P ′, f) = L(P, f)− ε/8. This implies

U(P ′, f)− L(P ′, f) = U(P, f) + 3
ε

8
− L(P, f) + ε/8 = ε/2 +

(
U(P, f)− L(P, f)

)
< ε/2 + ε/2 = ε

Thus f is Riemann integrable.

10

11 Prove the Integral Mean Value Theorem

Let f be real and continuous on [a, b]. Partition [a, b] by P = {a, b}. Then L(P, f) = (b − a)f(y) and U(P, f) =
(b− a)f(z) where f(y) = max(f(x)) and f(z) = min(f(x)) for x ∈ [a, b]. Thus because

L(P, f) ≤
∫ b

a

f(x) dx ≤ U(P, f)

we have

f(y) ≤ 1

b− a

∫ b

a

f(x) dx ≤ f(z)

Since f is continuous on [y, z] then The Intermediate Value Theorem tells us that there is a c ∈ [y, x] such that

1

b− a

∫ b

a

f(x) dx = f(c)

as desired.
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