Math 508: Advanced Analysis Homework 8

Lawrence Tyler Rush <me@tylerlogic.com>

November 8, 2014 http://coursework.tylerlogic.com/courses/upenn/math508/homework08 For h > 0 we have

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$
$$= \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}$$
$$= (\cos x)(0) - (\sin x)(1)$$
$$= -\sin x$$

where we make use of the trigonometric identity $\cos(x+y) = \cos x \cos y - \sin x \sin y$ and the fact that

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$$

and

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

2 Derivatives of matrices

Let A(t) be an $n \times n$ matrix whose elements depend smoothly on t and that is invertible at t_0 .

(a) Compute the derivative of $A^2(t)$ in terms of A and A'

The derivative of $A^{2}(t)$ is the derivative with respect to t of each of its elements as functions of t. So

$$\frac{d}{dt} \left(A^2(t) \right)_{ij} = \frac{d}{dt} \sum_{k=1} n a_{ik} a_{kj} = \sum_{k=1} n \left(a'_{ik} a_{kj} + a_{ik} a'_{kj} \right) = (A'A + AA')_{ij}$$

so that we have $\frac{d}{dt}A^2(t) = A'A + AA'$. Note the multiplication of A and A' may not commute.

(b) Show A(t) is invertible for all t near t_0

We know that a matrix is invertible if and only if it has nonzero determinent. Since the determinent of A is simply the sum and product of entries of A and the entries of A depend smoothly on t, then det(A(t)) also depends smoothly on t. Since $A(t_0)$ is invertible, then $det(A(t_0)) \neq 0$, which, along with the previous sentence, implies that there is a neighborhood of t_0 for which all t in that neighborhood have $det(A(t)) \neq 0$.

(c) Find a formula for the derivative of $A^{-1}(t)$ at t_0

For h > 0 we have.

$$\lim_{h \to 0} \frac{A^{-1}(t_0 + h) - A^{-1}(t_0)}{h} = \lim_{h \to 0} \frac{\left(A^{-1}(t_0)A(t_0)\right)A^{-1}(t_0 + h) - A^{-1}(t_0)\left(A(t_0 + h)A^{-1}(t_0 + h)\right)}{h}$$
$$= A^{-1}(t_0)\lim_{h \to 0} \frac{A(t_0) - A(t_0 + h)}{h}A^{-1}(t_0 + h)$$
$$= A^{-1}(t_0)\left(-\lim_{h \to 0} \frac{A(t_0 + h) - A(t_0)}{h}A^{-1}(t_0 + h)\right)$$
$$= A^{-1}(t_0)\left(-A'(t_0)\right)\left(\lim_{h \to 0} A^{-1}(t_0 + h)\right)$$
$$= -A^{-1}(t_0)A'(t_0)A^{-1}(t_0)$$

so that $(A^{-1})' = -A^{-1}A'A^{-1}$

By the first part of this problem we have

$$\frac{d}{dt}(A^{-2}) = (A^{-1})'A^{-1} + A^{-1}(A^{-1})'$$

which, through use of the previous part of the problem, leads to

$$\frac{d}{dt}\left(A^{-2}\right) = \left(-A^{-1}A'A^{-1}\right)A^{-1} + A^{-1}\left(-A^{-1}A'A^{-1}\right) = -\left(A^{-1}A'A^{-2} + A^{-2}A'A^{-1}\right)$$

3

(a) Find the unique solution v(x) such that v' = v and v(0) = c for constant c.

Let v(x) be such that v' = v and v(0) = c. Define $u(x) = \frac{1}{c}v(x)$. Then

$$u'(x) = \frac{1}{c}v'(x) = \frac{1}{c}v(x) = u(x)$$
(3.1)

and

$$u(0) = \frac{1}{c}v(0) = \frac{1}{c}c = 1$$
(3.2)

Thus, u(x) must be e^x since e^x is the unique function with the properties in equations 3.1 and 3.2. But then we have $e^x = u(x) = \frac{1}{c}v(x)$ implying $v(x) = ce^x$.

(b) Prove that $e^{x+a} = e^a e^x$ for all real a and x

Define $u(x) = e^{x+a} - e^a e^x$ for real *a*. Then we have

$$u(0) = e^a - e^a = 0$$

and

$$u'(x) = e^{x+a} - e^a e^x = u(x)$$

by the previous part of this problem, $u(x) = 0e^x = 0$. Hence $e^{x+a} = e^a e^x$.

(c) For constant γ show $v' - \gamma v \leq 0$ implies $v(x) \leq v(0)e^{\gamma x}$ for $x \geq 0$

Let $v' - \gamma v \leq 0$ and define $g(x) = e^{-\gamma x} v(x)$. Then we have

$$g' = -\gamma e^{-\gamma x} v + v' e^{-\gamma x} = e^{-\gamma x} \left(v' - \gamma v \right) \le 0$$

which implies that g is always decreasing so that in particular $g(x) \leq g(0)$ for all $x \geq 0$. That is to say that

$$\begin{array}{rcl} g(x) &\leq & g(0) \\ e^{-\gamma x} v(x) &\leq & e^{-\gamma 0} v(0) \\ e^{-\gamma x} v(x) &\leq & v(0) \\ v(x) &\leq & v(0) e^{\gamma x} \end{array}$$

for all $x \ge 0$.

4 Show that a continuous $f : [a, b] \to \mathbb{R}$ can be approximated by a piecewise linear function $g : [a, b] \to \mathbb{R}$

Let $\varepsilon > 0$ be given. Because f is continuous and [a, b] is compact, then f is uniformly continuous, and we can thus find a $\delta > 0$ such that

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

$$(4.3)$$

We divide [a, b] up into chuncks of size less than δ . Let n be an integer such that $n\delta > b$ so that $\delta > \frac{b}{n}$. Hence, each of $[a, a + \overline{\delta}), [a + \overline{\delta}, a + 2\overline{\delta}), \ldots, [a + (n-1)\overline{\delta}, b)$, where $\overline{\delta} = \frac{b-a}{n}$, are intervals of size less than δ . Define $M_i = \sup f(x)$ and $m_i = \inf f(x)$ for each $i \in \{0, 1, \cdots, n-1\}$ and $x \in [a + i\overline{\delta}, a + (i+1)\overline{\delta})$ so that in particular

$$\left| f(x) - \frac{M_i - m_i}{2} \right| < \varepsilon \tag{4.4}$$

for any $x \in [a + i\overline{\delta}, a + (i+1)\overline{\delta})$ by equation 4.3. Further define a set of functions $\varphi_i : [a, b] \to \{0, 1\}$ by

$$\varphi_i(x) = \begin{cases} 1 & x \in [a+i\overline{\delta}, a+(i+1)\overline{\delta}) \\ 0 & \text{otherwise} \end{cases}$$

so that we may define $g:[a,b] \to \mathbb{R}$ by

$$g(x) = \delta_b(x)f(b) + \sum_{i=0}^{n-1} \varphi_i(x) \frac{M_i - m_i}{2}$$

where δ_b is the Kronecker function. Thus for any $x \in [a + i\overline{\delta}, a + (i+1)\overline{\delta})$ we have

$$|f(x) - g(x)| = \left| f(x) - \frac{M_i - m_i}{2} \right| < \varepsilon$$

by equation 4.4 and for x = b we have $|f(x) - g(x)| = |f(b) - f(b)| = 0 < \varepsilon$ as desired.

$\mathbf{5}$

Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function.

(a) If f'(1) = f''(1) = f'''(1) = 0 and f''''(1) > 0, show f has a local minimum at x = 1.

Let f'(1) = f''(1) = f'''(1) = 0 and f''''(1) > 0. Then there is an $\varepsilon > 0$ such that f''''(x) > 0 for $x \in (1 - \varepsilon, 1 + \varepsilon)$. So if $1 < x < 1 + \varepsilon$ then repeated applications of The Fundamental Theorem of Calculus tells us

$$\begin{split} f(x) - f(1) &= \int_{1}^{x} f'(y) \, dy \\ &= \int_{1}^{x} f'(y) - f'(1) \, dy \\ &= \int_{1}^{x} \int_{1}^{y} f''(z) \, dz dy \\ &= \int_{1}^{x} \int_{1}^{y} f''(z) - f''(1) \, dz dy \\ &= \int_{1}^{x} \int_{1}^{y} \int_{1}^{z} f'''(w) \, dw dz dy \\ &= \int_{1}^{x} \int_{1}^{y} \int_{1}^{z} f'''(w) - f'''(1) \, dw dz dy \\ &= \int_{1}^{x} \int_{1}^{y} \int_{1}^{z} \int_{1}^{w} f'''(s) \, ds dw dz dy \\ &= 0 \end{split}$$

Rush 3

which implies f(x) > f(1). Furthermore, for any x with $1 - \varepsilon < x < 1$ we have again by repeated applications of The Fundamental theorem of Calculus

$$\begin{split} f(x) - f(1) &= -\int_{x}^{1} f'(y) \, dy \\ &= -\int_{x}^{1} f'(y) - f'(1) \, dy \\ &= \int_{x}^{1} \int_{y}^{1} f''(z) \, dz dy \\ &= \int_{x}^{1} \int_{y}^{1} f''(z) - f''(1) \, dz dy \\ &= -\int_{x}^{1} \int_{y}^{1} \int_{z}^{1} f'''(w) \, dw dz dy \\ &= -\int_{x}^{1} \int_{y}^{1} \int_{z}^{1} f'''(w) - f'''(1) \, dw dz dy \\ &= \int_{x}^{1} \int_{y}^{1} \int_{z}^{1} \int_{w}^{1} f'''(s) \, ds dw dz dy \\ &= \int_{x}^{1} \int_{y}^{1} \int_{z}^{1} \int_{w}^{1} f'''(s) \, ds dw dz dy \\ &> 0 \end{split}$$

again so that f(x) > f(1). Hence if $x \in (1 - \varepsilon, 1 + \varepsilon)$ then $f(x) \ge f(1)$ so that f(1) is a local minimum.

(b) What can be said about f near x = 1 when f'(1) = f''(1) = 0 and f'''(1) > 0.

There is nothing that can be generally said about f since it may not be a local maximum or minimum at all.

6

Let u(x) be a smooth solution to the differential equation

 $u'' + 3u' - (1 + x^2)u = 0$

(a) Show that *u* cannot have a positive local maximum

Given the differential equation above, we have

$$u'' + 3u' = (1 + x^2)u$$

for u(x) so that at any local maximum x_0 where $u(x_0) = 0$, we have

$$u'' = (1 + x_0^2)u \tag{6.5}$$

So if $u(x_0)$ is positive then $u''(x_0) > 0$, i.e. u is convex at x_0 . Thus if $u(x_0)$ is positive then u can only have a local minimum at x_0 .

(b) Show that *u* cannot have a negative local minimum

Let x_0 be as in the previous part of this problem. Equation 6.5 also implies that if $u(x_0)$ is negative, then so is $u''(x_0)$. Hence u can only have a negative local maximum at x_0 .

If u is zero on [0, 2], then we are done. So let $x_0 \in (0, 2)$ be nonzero. Either

- 1. $u(x_0) > 0$ or
- 2. $u(x_0) < 0$

If the first case, then since u is smooth, it is bounded on [0, 2]. Thus there must be a maximum positive value of u on [0, 2]. But this contradicts the first part of this problem. This case can thus not happen.

If the second case, then since u is smooth it is bounded on [0, 2]. Thus there must be a minimum negative value of u on [0, 2]. But this contradicts the second part of this problem. Thus this case can also not happen.

Hence, the only possible scenario is u(x) = 0 for $x \in [0, 2]$.

8 Use the Reimann sum to compute $\int_0^b \sin x \, dx$

Define a partition P_n of [0, b] by $P = \{0, \theta, 2\theta, \dots, (n-1)\theta, b\}$ where $\theta = b/n$. Then we have

$$U(P_n, \sin x) = \theta(\sin \theta + \dots + \sin(n\theta))$$

and

$$L(P_n, \sin x) = \theta(\sin 0 + \sin \theta + \dots + \sin((n-1)\theta))$$

so that $U(P_n, \sin x) - L(P_n, \sin x) = \theta \sin(n\theta)$ which approaches zero as $n \to \infty$. Thus we know that $\sin x$ is indeed integrable.

Now to find the actual value of the integral of $\sin x$ we evaluate $\lim_{n\to\infty} U(P_n, \sin x)$. So because $\theta = b/n$ we have the following.

$$\lim_{n \to \infty} U(P_n, \sin x) = \lim_{n \to \infty} \theta \sum_{k=1}^n \sin(k\theta)$$

=
$$\lim_{n \to \infty} \theta \left(\frac{\cos(\theta/2) - \cos((n+1/2)\theta)}{2\sin(\theta/2)} \right)$$

=
$$\left(\lim_{n \to \infty} \cos(\theta/2) - \cos((n+1/2)\theta) \right) \left(\lim_{n \to \infty} \frac{\theta}{2\sin(\theta/2)} \right)$$

=
$$\left(\cos(0) - \cos(b) \right) (1)$$

=
$$1 - \cos(b)$$

so that $\int_0^b \sin x \, dx = 1 - \cos(b)$

9 Define f(0) = 3 and $f(x) = \sin(1/x)$ for $x \in (0, 2/\pi]$. Show f is Reimann integrable.

Let $\varepsilon > 0$ be given. Then on the interval $[\varepsilon/8, 2\pi] f$ is continuous and therefore Reimann integrable on the interval. Hence there exists a partition P such that $U(P, f) - L(P, f) < \varepsilon/2$. Define a partition $P' = P \cup \{0\}$. Then we have $U(P', f) = U(P, f) + 3\frac{\varepsilon}{8}$ and $L(P', f) = L(P, f) - \varepsilon/8$. This implies

$$U(P',f) - L(P',f) = U(P,f) + 3\frac{\varepsilon}{8} - L(P,f) + \varepsilon/8 = \varepsilon/2 + \left(U(P,f) - L(P,f)\right) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Thus f is Riemann integrable.

10

11 Prove the Integral Mean Value Theorem

Let f be real and continuous on [a, b]. Partition [a, b] by $P = \{a, b\}$. Then L(P, f) = (b - a)f(y) and U(P, f) = (b - a)f(z) where $f(y) = \max(f(x))$ and $f(z) = \min(f(x))$ for $x \in [a, b]$. Thus because

$$L(P,f) \le \int_{a}^{b} f(x) \, dx \le U(P,f)$$

we have

$$f(y) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le f(z)$$

Since f is continuous on [y, z] then The Intermediate Value Theorem tells us that there is a $c \in [y, x]$ such that

$$\frac{1}{b-a}\int_a^b f(x)\ dx = f(c)$$

as desired.