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1

Let c ∈ R be positive, f ∈ R be an even function, and g ∈ R and be an odd function.

(a) Show
∫ c

−c
f(x)dx = 2

∫ c

0
f(x)dx

We can separate
∫ c
−c f(x)dx as ∫ c

−c
f(x)dx =

∫ 0

−c
f(x)dx+

∫ c

0

f(x)dx

Through a change of variable, setting x = h(u) where h(u) = −u, we obtain∫ c

−c
f(x)dx =

∫ 0

c

f(h(u))h′(u)du+

∫ c

0

f(x)dx

=

∫ 0

c

f(−u)(−1)du+

∫ c

0

f(x)dx

= −
∫ 0

c

f(u)du+

∫ c

0

f(x)dx

=

∫ c

0

f(u)du+

∫ c

0

f(x)dx

=

∫ c

0

f(x)dx+

∫ c

0

f(x)dx

= 2

∫ c

0

f(x)dx

since f is even.

(b) Show
∫ c

−c
g(x)dx = 0

We can separate
∫ c
−c g(x)dx as ∫ c

−c
g(x)dx =

∫ 0

−c
g(x)dx+

∫ c

0

f(x)dx

Through a change of variable, setting x = h(u) where h(u) = −u, we obtain∫ c

−c
g(x)dx =

∫ 0

c

g(h(u))h′(u)du+

∫ c

0

g(x)dx

=

∫ 0

c

g(−u)(−1)du+

∫ c

0

g(x)dx

= −
∫ 0

c

−g(u)du+

∫ c

0

g(x)dx

=

∫ 0

c

g(u)du+

∫ c

0

g(x)dx

= −
∫ c

0

g(u)du+

∫ c

0

g(x)dx

= −
∫ c

0

g(x)dx+

∫ c

0

g(x)dx

= 0

since g is odd.
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(c) Show
∫ c

−c
f(x)g(x)dx = 0

Since f(−x)g(−x) = f(x)(−g(x)) = −f(x)g(x) then f(x)g(x) is an odd function. By the previous part of this
problem ∫ c

−c
f(x)g(x)dx = 0

2 Find function f and constant c so that
∫ x
0 f(t)e

3tdt = c+x−cos(x2)

Let’s guess that f(t) = e−3t(1 + 2t sin(t2)) so that∫ x

0

f(t)e3tdt =

∫ x

0

(1 + 2t sin(t2))dt =

∫ x

0

dt+

∫ x

0

2t sin(t2)dt = x+

∫ x

0

2t sin(t2)dt (2.1)

Defining g(s) =
√
s we have g(0) = 0 and g(x2) = x so that by putting t = g(s) we have∫ x

0

2t sin(t2)dt =

∫ x2

0

2(g(s)) sin((g(s))2)g′(s)ds

=

∫ x2

0

2(
√
s) sin(s)

(
1

2
√
s

)
ds

=

∫ x2

0

sin(s)ds

= − cos(x2) + cos(0)

= 1− cos(x2)

through a change of variable. Substituting this result back into equation 2.1 we obtain∫ x

0

f(t)e3tdt = 1 + x− cos(x2)

so that we see our definition of f works with c = 1.

3

Let f(x) =
√

9 + x4 and define a partition P of [0, 2] by P = {0 = x0, x1, . . . , xN = 2} where xj−xj−1 = ∆x = 2/N .
Since f is a monotonically increasing function on [0, 2], then

U(P, f) =

N∑
i=1

f(xi)∆x =
2

N

N∑
i=1

f(xi)

and

L(P, f) =

N∑
i=1

f(xi−1)∆x =
2

N

N∑
i=1

f(xi−1)

leaving us with an error in estimation of

U(P, f)− L(P, f) =
2

N

N∑
i=1

f(xi)−
2

N

N∑
i=1

f(xi−1) =
2

N
(f(2)− f(0)) =

2

N
(5− 3) =

4

N

Hence, if we’d like the error in our computation of
∫ 2

0

√
9 + x4dx to be less than 1/100, then we need 4/N < 1/100,

i.e. N > 400.
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4

Let f(s) be a smooth function and c be a constant. Define

u(x, t) =

∫ x+ct

x−ct
f(s)ds

Applying the fundamental theorem of calculus then yields the following four equations

∂xu = f(x+ ct)− f(x− ct) ∂tu = cf(x+ ct) + cf(x− ct)
∂2xu = f ′(x+ ct)− f ′(x− ct) ∂2t u = c2f ′(x+ ct)− c2f ′(x− ct)

and so we see that

∂2t u = c2f ′(x+ ct)− c2f ′(x− ct) = c2 (f ′(x+ ct)− f ′(x− ct)) = c2∂2xu

5

(a)

If we set

u =
1

c

(
− cos(cx)

∫ x

0

f(t) sin(ct)dt+ sin(cx)

∫ x

0

f(t) cos(ct)dt

)
(5.2)

then

u′ = sin(cx)

∫ x

0

f(t) sin(ct)dt+ cos(cx)

∫ x

0

f(t) cos(ct)dt

and

u′′ = c

(
cos(cx)

∫ x

0

f(t) sin(t)dt− sin(cx)

∫ x

0

f(t) cos(ct)dt

)
+ sin2(cx)f(x) + cos2(cx)f(x)

= c

(
cos(cx)

∫ x

0

f(t) sin(t)dt− sin(cx)

∫ x

0

f(t) cos(ct)dt

)
+ f(x)

(
sin2(cx) + cos2(cx)

)
Hence u′′ + c2u = f(x).

(b)

Let 0 < c < 1. Let u(x) and w(x) be solutions to the differential equation w′′ + c2w = f(x) and be zero on the
boundary points of [0, π]. Then define v(x) = w(x)− u(x). We would then have

v′′ + c2v = w′′ − u′′ + c2(w + u) = (w′′ + c2w)− (u′′ + c2u) = f(x)− f(x) = 0 (5.3)

Thus the v must have the form
v = a sin(cx) + b cos(cx)

for some a and b as it is the solution of the homogenous equation in 5.3. Hence v(0) = a sin(0) + b cos(0) = b =
w(0) − u(0) = 0 so that b is 0. Furthermore v(π) = a sin(cπ) = w(π) − u(π) = 0 so that a sin(cπ) = 0. Since
0 < c < 1, then a = 0. Thus v(x) = 0, which implies w and u are the same. Hence there is only one unique solution
when 0 < c < 1.
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(c)

Let c = 1, in which case we have u′′ + u = f . Thus with two applications of integration by parts we get∫ π

0

f(x) sinx dx =

∫ π

0

u′′ sinx dx+

∫ π

0

u sinx dx

= u′(π) sinπ − u′(0) sin 0−
∫ π

0

u′cosdx+

∫ π

0

u sinx dx

= −
∫ π

0

u′cosdx+

∫ π

0

u sinx dx

= −
(
u(π) sinπ − u(0) sin 0−

∫ π

0

u(− sinx)dx

)
+

∫ π

0

u sinx dx

= −
(
−
∫ π

0

u(− sinx)dx

)
+

∫ π

0

u sinx dx

= 0

(d)

Applying are result from part (a) to the situation when c = 1, the previous part implies equation 5.2 becomes

u =
1

c

(
− cos(cx)

∫ x

0

f(t) sin(ct)dt+ sin(cx)

∫ x

0

f(t) cos(ct)dt

)
= − cos(x)

∫ x

0

f(t) sin(t)dt+ sin(x)

∫ x

0

f(t) cos(t)dt

= sin(x)

∫ x

0

f(t) cos(t)dt

which is the unique solution for u.

6

Let L be the differential operator defined by Lw = −w′′ + c(x)w on the interval J = [a, b], where c(x) is some
continuous function. Define the inner product by

〈f, g〉 =

∫ b

a

f(x)g(x)dx
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(a) Show 〈Lu, v〉 = 〈u, Lv〉 for u and v that are both zero on the boundary of J .

We first layout a helpful equation obtained via two applications of integration by parts:∫ b

a

u′′vdx = u′(b)v(b)− u′(a)v(a)−
∫ b

a

u′v′dx

= u′(b)(0)− u′(a)(0)−
∫ b

a

u′v′dx

= −
∫ b

a

u′v′dx

= −

(
u(b)v′(b)− u(a)v′(a)−

∫ b

a

uv′′dx

)

= −

(
(0)v′(b)− (0)v′(a)−

∫ b

a

uv′′dx

)

=

∫ b

a

uv′′dx

taking into account that the boundary points for u and v are zero, i.e. u(a) = v(a) = u(b) = v(b) = 0. With the
above equation, our job is simple:

〈Lu, v〉 =

∫ b

a

(Lu)vdx

=

∫ b

a

(−u′′ + c(x)u)vdx

= −
∫ b

a

u′′vdx+

∫ b

a

c(x)uvdx

= −
∫ b

a

uv′′dx+

∫ b

a

c(x)uvdx

=

∫ b

a

u(−v′′)dx+

∫ b

a

u (c(x)v) dx

=

∫ b

a

u(−v′′ + c(x)v)dx

=

∫ b

a

u(Lv)dx

= 〈u, Lv〉

(b) If Lu = λ1u and Lv = λ2v for λ1 6= λ2 then 〈u, v〉 = 0

In considering (λ1 − λ2)〈u, v〉, we use the previous part of this problem:

(λ1 − λ2)〈u, v〉 = λ1〈u, v〉 − λ2〈u, v〉
= 〈λ1u, v〉 − 〈u, λ2v〉
= 〈Lu, v〉 − 〈u, Lv〉
= 〈u, Lv〉 − 〈u, Lv〉
= 0

Since λ1 6= λ2 we must therefore have 〈u, v〉.
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(c) If Lu = 0 and Lv = f(x), show 〈u, f〉 = 0

If Lu = 0 and Lv = f , then we have the following

〈u, f〉 = 〈u, Lv〉 = 〈Lu, v〉 = 〈0, v〉 = 0

7 Compute the arclength of X(t) = (cos t, sin t, t) in R3

We have that
|X ′(t)| = |(− sin t, cos t, 1)| =

√
sin2 t+ cos2 t+ 1 =

√
2

so that ∫ 4π

0

|X ′(t)|dt =

∫ 4π

0

√
2dt =

√
2(4π − 0) = 4π

√
2

8

9

(a)

This is virtually problem 5 of the previous homework.

(b)

The value ‖f‖1 has the following three properties

1.
∫ 1

0
|f(x)|dx ≥ 0 with equality only when f = 0.

2.
∫ 1

0
|cf(x)|dx = |c|

∫ 1

0
|f(x)|dx = |c|‖f‖

3.
∫ 1

0
|f(x) + g(x)|dx ≤

∫ 1

0
|f(x)|+ |g(x)|dx = ‖f‖+ ‖g‖

which make it a norm on C([0, 1]).

(c)

10 Compute limλ→∞
∫ 1

0 | sin(λx)|dx

Since the graph of | sin(λx)| for an arbitrary λ is just a sequence of concave “humps”, we can find the area under
a single “hump” and then multiply that times the fraction of these “humps” that are between 0 and 1. One such
“hump” is the left-most one in [0, 1]. It’s area is that of the area under | sin(λx)| on the interval [0, πλ ]. Furthermore

there are λ
π of these “humps” over the interval [0, 1]. Hence we have

lim
λ→∞

∫ 1

0

| sin(λx)|dx = lim
λ→∞

λ

π

∫ π
λ

0

| sin(λx)|dx =
1

π
lim
λ→∞

λ

∫ π
λ

0

| sin(λx)|dx
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However, on the interval [0, πλ ], sin(λx) is positive and so from the above equation we get

lim
λ→∞

∫ 1

0

| sin(λx)|dx =
1

π
lim
λ→∞

λ

∫ π
λ

0

sin(λx)dx

Now if we set x = g(u) where g(u) = u
λ , by a change of variable, we get

lim
λ→∞

∫ 1

0

| sin(λx)|dx =
1

π
lim
λ→∞

λ

∫ π

0

sin
(
λ
(u
λ

))( 1

λ

)
du =

1

π
lim
λ→∞

∫ π

0

sin(u)du

since g′(u) = 1
λ , g(π) = π

λ , and g(0) = 0. Hence we are left with

lim
λ→∞

∫ 1

0

| sin(λx)|dx =
1

π
lim
λ→∞

∫ π

0

sin(u)du =
1

π
lim
λ→∞

(− cos(π) + cos(0)) =
1

π
lim
λ→∞

0 = 0

11

Define g(x) = f(x)− c. Then limx→∞ = 0 and furthermore that

1

T

∫ T

0

f(x)dx = c+
1

T

∫ T

0

g(x)dx

Without loss of generality we may assume that c = 0. Then, since f is coninuous and limx→∞ = 0, f is bounded.
Thus there is an M such that |f(x)| < M . Let ε > 0 be given. Also becuase f is continuous, there exists a t such
that for x with 0 < t < x we have |f(x)− 0| < ε/2. Hence we have the following sequence of equations∣∣∣∣∣ 1

T

∫ T

0

f(x)dx

∣∣∣∣∣ ≤ 1

T

(∫ t

0

|f(x)|dx+

∫ T

t

|f(x)|dx

)

≤ 1

T

(∫ t

0

Mdx+

∫ T

t

ε/2dx

)

=
Mt

T
+

(T − t)ε/2
T

Thus for T such that Mt
T < ε/2, the right-hand side of the above equation becomes

ε/2 + ε/2
T − t
T

< ε

which implies

lim
T→∞

1

T

∫ T

0

f(x)dx = 0

as desired.

12

(a)

Let f : [0, 1]→ R be a continuous function such that∫ 1

0

f(x)g(x) = 0

for all continuous functions g(x). In particular if g(x) = f(x) we have∫ 1

0

(f(x))2 = 0

Since f(x)2 ≥ 0 we must then have f(x)2 = 0, and so therefore f(x) = 0.
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(b)

This is not true. By problem 6(b) of homework 6, the function

h(x) =

{
0 x ≤ 0(
x

√
L+ 1

x

)x
otherwise

approaches L as x approaches ∞. Hence we have that the function ga,b(x) defined by h(x − a)h(b − x) is zero
everywhere except for (a, b) where a, b > 0. Furthermore g(x) ∈ C1

So, assume for later contradiction that f(x) 6= 0 is such that
∫ 1

0
f(x)g(x) = 0 for all g(x) in C1. Then there

must be a point x0 where f is positive. Then there exists a, b ∈ [0, 1] with a < b such that x0 ∈ (a, b) and f is
positive on all of (a, b). However, since this is the case, then fga,b where ga,b is as defined above will be positive on
(a, b) and zero everywhere else, i.e. ∫ 1

0

f(x)ga,b(x)dx = 0

a contradiction.
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