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Let L : S — T be a linear map from vector spaces S to T. Let V; and V5 be distinct solutions of the equation
LX =Y;. Futhermore let W be a solution to the equation LX = Y5.

(a) Find a solution to LX = 2Y; — 7Y5

Put V. =2V; — 7W. Then
LV =2LVy —7LW =2Y; — 7Y,

so that V is a solution to LX = 2Y; — 7Y5.

(b) Find a solution (other than W) to LX =Y

Let V be as above and set V =V + 6W — 2V; + 6W so that
LV =LV —2LV; +6LW =2Y; —TYs —2LY; +6Ys = Y5

Hence V is another solution to LX = Y.
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Let f(z) € C([a,b]) and put

b
T@) = [ fa)da

Because e* > 1 + u for all u, then in particular we have e/ -f > 1+ f — f. Thus we have the following sequence

v

ef (@) b
: T / f(x)dx

eb—a fabf(m)dz b_a/

b ef W) b 1 b
/a e / 4 f) - / f(@)de | dy

bofwg b b b b

L’ Wdy 1

heot = [ays [1wa- | (b_a / f(l‘)dfc> ay
egb—a Ja a a a a

\%

V

b

P el W dy b b—a [P
_Ja = v > b— dy — d
o T = “H/af(y)y b—a/af(m)x
befWy
f“e Y dy > b—a

oita Jo F(@)de

b
bl /ef(y)dy > eisa Ju f(@)de
—al,

giving us the desired result.
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4 Determine which of the following are pointwise and uniformly con-
vergent

Since uniform convergence implies pointwise convergence, the proofs below omit any mention of pointwise conver-
gence if the given sequence is proven to be uniformly convergent.

(a) fo(x) ==2% on R

Let £ > 0 be given. Choose integer N so that Ne > 1. Since 0 < |sinz| < 1 for all z, then

sinx 1
< <-—<e
n n
for all n > N. Hence f,, — 0 uniformly.
_ 1
(b) fn(w) T 14nzx on [07 1]
This sequence converges pointwise to
1 z=0

0 otherwise

)= {

since for x = 0 f,(z) = 1 for all n. And furthermore, for any £ > 0, at a fixed z¢ € (0,1] we can choose integer N
such that N > % (l — 1) so that

€

1
1+ nxg

foralln > N
This sequence of functions, however, does not converge uniformly. Because each f,, is continuous on [0, 1],
converging uniformly would imply that f above is continuous, but it’s not, due to the simple discontinuity at x = 0.

() fal@) = 2z on B

For each n,
1 2na?

T 14 na? (1 + nz2)?

f(2)

which is zero only at © = £4/1/n. Since f,(x) is positive on (0,00) and negative on (—oo,0), we have that
fn has a minimum at —/1/n and a maximum at y/1/n. Because the minimum and maximum for each n are

fo(=+/1/n) = =1/24/1/n and f,(y/1/n) = 1/24/1/n, respectively, we have

0 < |fu(@)| < ;\/g< 1/n

for all n € N. Hence, given any ¢ > 0, choosing integer N so that Ne > 1 gives us |f,(x)| < e for all n > N and all
z € R. Thus f, — 0 uniformly.
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Let {f.} and {gn} be sequences of functions in C([0,1]). f, — f and g, — g.

(a) If both f, — f and g,, — g pointwise, does f,g, — fg pointwise fg?

Yes. For a fixed zg € [0,1], {fn(z0)} and {gn(zo)} are just normal sequences, and so f,(20)gn(x0) = f(z0)g(zo)
since fn,(z) = f(x) and g, () — g(x).
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(b) If both f, — f and g,, — g uniformly, does f,g, — fg uniformly fg?

Let € > 0 be given. Because all {f,} and {g,,} are continuous, then their uniform convergence implies that both f
and g are also continuous. Hence f and g are bounded on [0, 1]. Due to this, we can find an M such that |f(x)] < M
and |g(x)| < M. Furthermore, the uniform convergence of f, — f and g, — g we can find integer N such that

both
[fa(@) = ()] < min (ﬁ 3)
and lgn(z) — g(2)| < min (\/? 35)

for all € [0,1] and n > N. Hence we have

[fugn(@) = fo(@)| = |(fulx) = f(2))(gn(2) — 9(2)) + f(2)(gn(2) — 9(2)) + g(x)(fu(2) — f(2))]
[fn(@) = £(@)llgn(2) — g(@)| + | f (@)|lgn(2) — 9(2)| + [g(2)[| fn(2) — f ()]

2
€ g g
z M— + M——
( 3) MY VATV

IA

= £

for all n > N and all z € [0, 1], which implies that f,g, — fg uniformly.

6

This problem is identical to a problem on the previous homework.

7 Explain which conditions of the Contracting Map Theorem fail for
the following

(a) @ +— x4+ I on [0,c0)

Denote this map by f. This map is not a contraction map because there is no o < 1 such that

d(f(x), f(y)) < ad(z,y) (7.1)
for all ,y € [0,00). This is because the difference between d(z,y) and d(f(z), f(y)) is
1 1 1 1 —
e-v- (ot -y D)< 22|22y
r Y r oy Ty

which can be made arbitrarily close to zero by making z and y large enough. This is problematic because the
contraction condition in 7.1 implies that

(1 —a)d(z,y) < d(f(z), f(y)) — d(z,y)

must be true; which is not the case when the difference on the righthand side above can be made arbitrarily close
to zero.

(b) x~ % on (0,1]

Denote this mapping by f. The failure here is that the metric space (0,1] is not complete. In particular, the
method of successive approximations fails for this mapping since the sequence {z,} defined by =, = f(x,—1) for
fixed, arbitrary xzo € (0, 1] converges to zero, which is not in (0, 1].
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Let

I
I

(a) For which real x is f continuous?

Define {f,} to be the partial sums of the summation f. Since |sin(kx)| < 1 for all k£ and all x and 1 + k* is
increasing, then this sum converges for all z and therefore f,, — f. Moreover, this means each f,, has a bound M,
and Y M, converges. This then implies that f,, — f uniformly. Hence, because each f,, is continuous, f must also
be continuous.

(b) Is f differentiable? Why?

Since f(z) is a summation that converges for all z, then f(x) < oo, and thus f(z) is continuous since it is the
composition of continuous functions. Furthermore, because

o0

k cos(kx) s k k
/Z EEYZ _i_zll+k4/cos(k$)_zl+k4

—_

= ;)3)

=

then f/(x) = k(ﬁgzz) by the Fundamental Theorem of Calculus.

9

For any complex number z = x + iy and integer n we have n® = n®*% = n®n¥. Furthermore we have

In(n'¥) — eiyln(n) =1

] = |

Thus for any sequence bounded by M and all z € C in the set {z =z + iy | > ¢} where ¢ > 1, we have

n=1 n=1 n=1

SR

g

so that 7 %2 converges.

10 Show that f,(z) = nz"(1 — z) does not converge uniformly on [0, 1].

For x, =1 —1/n (which is always in [0, 1]) then

folz)=n*Q—=1/n)"(1-(1—-1/n))=n>(1—-1/n)"

Therefore since (1—1/n)™ — 1/e as n — oo then f,, can be made arbitrarily large and so cannot converge uniformly.

11 Give an example of a sequence of continuous functions for each of
the below.
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(a) A sequence of continous functions that converges to zero on [0, 1] but not uni-
formly

Problem ten has already proven this.

(b)

(c)

Rush 5



