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1

Let L : S → T be a linear map from vector spaces S to T . Let V1 and V2 be distinct solutions of the equation
LX = Y1. Futhermore let W be a solution to the equation LX = Y2.

(a) Find a solution to LX = 2Y1 − 7Y2

Put V = 2V1 − 7W . Then
LV = 2LV1 − 7LW = 2Y1 − 7Y2

so that V is a solution to LX = 2Y1 − 7Y2.

(b) Find a solution (other than W ) to LX = Y2

Let V be as above and set V = V + 6W − 2V1 + 6W so that

LV = LV − 2LV1 + 6LW = 2Y1 − 7Y2 − 2LY1 + 6Y2 = Y2

Hence V is another solution to LX = Y2.

2

Let f(x) ∈ C([a, b]) and put

f(x) =
1

b− a

∫ b

a

f(x)dx

Because eu ≥ 1 + u for all u, then in particular we have ef−f ≥ 1 + f − f . Thus we have the following sequence

ef(x)

e
1

b−a

∫ b
a
f(x)dx

≥ 1 + f(x)− 1

b− a

∫ b

a

f(x)dx∫ b

a

ef(y)

e
1

b−a

∫ b
a
f(x)dx

dy ≥
∫ b

a

(
1 + f(y)− 1

b− a

∫ b

a

f(x)dx

)
dy

∫ b

a
ef(y)dy

e
1

b−a

∫ b
a
f(x)dx

≥
∫ b

a

dy +

∫ b

a

f(y)dy −
∫ b

a

(
1

b− a

∫ b

a

f(x)dx

)
dy

∫ b

a
ef(y)dy

e
1

b−a

∫ b
a
f(x)dx

≥ (b− a) +

∫ b

a

f(y)dy − b− a
b− a

∫ b

a

f(x)dx∫ b

a
ef(y)dy

e
1

b−a

∫ b
a
f(x)dx

dy ≥ b− a

1

b− a

∫ b

a

ef(y)dy ≥ e
1

b−a

∫ b
a
f(x)dx

giving us the desired result.

3
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4 Determine which of the following are pointwise and uniformly con-
vergent

Since uniform convergence implies pointwise convergence, the proofs below omit any mention of pointwise conver-
gence if the given sequence is proven to be uniformly convergent.

(a) fn(x) = sinx
n

on R

Let ε > 0 be given. Choose integer N so that Nε > 1. Since 0 ≤ | sinx| ≤ 1 for all x, then

0 ≤
∣∣∣∣ sinxn

∣∣∣∣ ≤ 1

n
< ε

for all n ≥ N . Hence fn → 0 uniformly.

(b) fn(x) = 1
1+nx

on [0, 1]

This sequence converges pointwise to

f(x) =

{
1 x = 0
0 otherwise

since for x = 0 fn(x) = 1 for all n. And furthermore, for any ε > 0, at a fixed x0 ∈ (0, 1] we can choose integer N
such that N > 1

x0

(
1
ε − 1

)
so that ∣∣∣∣ 1

1 + nx0

∣∣∣∣ < ε

for all n ≥ N
This sequence of functions, however, does not converge uniformly. Because each fn is continuous on [0, 1],

converging uniformly would imply that f above is continuous, but it’s not, due to the simple discontinuity at x = 0.

(c) fn(x) = x
1+nx2 on R

For each n,

f ′n(x) =
1

1 + nx2
− 2nx2

(1 + nx2)2

which is zero only at x = ±
√

1/n. Since fn(x) is positive on (0,∞) and negative on (−∞, 0), we have that

fn has a minimum at −
√

1/n and a maximum at
√

1/n. Because the minimum and maximum for each n are

fn(−
√

1/n) = −1/2
√

1/n and fn(
√

1/n) = 1/2
√

1/n, respectively, we have

0 ≤ |fn(x)| ≤ 1

2

√
1

n
< 1/n

for all n ∈ N. Hence, given any ε > 0, choosing integer N so that Nε > 1 gives us |fn(x)| < ε for all n ≥ N and all
x ∈ R. Thus fn → 0 uniformly.

5

Let {fn} and {gn} be sequences of functions in C([0, 1]). fn → f and gn → g.

(a) If both fn → f and gn → g pointwise, does fngn → fg pointwise fg?

Yes. For a fixed x0 ∈ [0, 1], {fn(x0)} and {gn(x0)} are just normal sequences, and so fn(x0)gn(x0) → f(x0)g(x0)
since fn(x)→ f(x) and gn(x)→ g(x).

Rush 2



(b) If both fn → f and gn → g uniformly, does fngn → fg uniformly fg?

Let ε > 0 be given. Because all {fn} and {gn} are continuous, then their uniform convergence implies that both f
and g are also continuous. Hence f and g are bounded on [0, 1]. Due to this, we can find an M such that |f(x)| ≤M
and |g(x)| ≤ M . Furthermore, the uniform convergence of fn → f and gn → g we can find integer N such that
both

|fn(x)− f(x)| < min

(√
ε

3
,
ε

3M

)
and

|gn(x)− g(x)| < min

(√
ε

3
,
ε

3M

)
for all x ∈ [0, 1] and n ≥ N . Hence we have

|fngn(x)− fg(x)| = |(fn(x)− f(x))(gn(x)− g(x)) + f(x)(gn(x)− g(x)) + g(x)(fn(x)− f(x))|
≤ |fn(x)− f(x)||gn(x)− g(x)|+ |f(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)|

<

(√
ε

3

)2

+M
ε

3M
+M

ε

3M
= ε

for all n ≥ N and all x ∈ [0, 1], which implies that fngn → fg uniformly.

6

This problem is identical to a problem on the previous homework.

7 Explain which conditions of the Contracting Map Theorem fail for
the following

(a) x 7→ x + 1
x

on [0,∞)

Denote this map by f . This map is not a contraction map because there is no α < 1 such that

d(f(x), f(y)) ≤ αd(x, y) (7.1)

for all x, y ∈ [0,∞). This is because the difference between d(x, y) and d(f(x), f(y)) is∣∣∣∣(x− y)−
(
x+

1

x
− y +

1

y

)∣∣∣∣ =

∣∣∣∣ 1x − 1

y

∣∣∣∣ =

∣∣∣∣x− yxy

∣∣∣∣
which can be made arbitrarily close to zero by making x and y large enough. This is problematic because the
contraction condition in 7.1 implies that

(1− α)d(x, y) ≤ d(f(x), f(y))− d(x, y)

must be true; which is not the case when the difference on the righthand side above can be made arbitrarily close
to zero.

(b) x 7→ x
2

on (0, 1]

Denote this mapping by f . The failure here is that the metric space (0, 1] is not complete. In particular, the
method of successive approximations fails for this mapping since the sequence {xn} defined by xn = f(xn−1) for
fixed, arbitrary x0 ∈ (0, 1] converges to zero, which is not in (0, 1].
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8

Let

f(x) =

∞∑
k=0

sin kx

1 + k4

(a) For which real x is f continuous?

Define {fn} to be the partial sums of the summation f . Since | sin(kx)| ≤ 1 for all k and all x and 1 + k4 is
increasing, then this sum converges for all x and therefore fn → f . Moreover, this means each fn has a bound Mn

and
∑
Mn converges. This then implies that fn → f uniformly. Hence, because each fn is continuous, f must also

be continuous.

(b) Is f differentiable? Why?

Since f(x) is a summation that converges for all x, then f(x) < ∞, and thus f(x) is continuous since it is the
composition of continuous functions. Furthermore, because∫ ∞∑

i=1

k cos(kx)

1 + k4
=

∞∑
i=1

k

1 + k4

∫
cos(kx) =

∞∑
i=1

k

1 + k4
1

k
cos(kx) =

∞∑
i=1

cos(kx)

1 + k4
= f(x)

then f ′(x) = k cos(kx)
1+k4 by the Fundamental Theorem of Calculus.

9

For any complex number z = x+ iy and integer n we have nz = nx+iy = nxniy. Furthermore we have∣∣niy∣∣ =
∣∣∣eln(niy)

∣∣∣ =
∣∣∣eiy ln(n)

∣∣∣ = 1

Thus for any sequence bounded by M and all z ∈ C in the set {z = x+ iy | x ≥ c} where c > 1, we have

∞∑
n=1

an
nz
≤
∞∑

n=1

M

nz
=

∞∑
n=1

M

nx
≤
∞∑

n=1

M

nc
<∞

so that
∑∞

n=1
an

nz converges.

10 Show that fn(x) = n3xn(1− x) does not converge uniformly on [0, 1].

For xn = 1− 1/n (which is always in [0, 1]) then

fn(xn) = n3 (1− 1/n)
n

(1− (1− 1/n)) = n2 (1− 1/n)
n

Therefore since (1−1/n)n → 1/e as n→∞ then fn can be made arbitrarily large and so cannot converge uniformly.

11 Give an example of a sequence of continuous functions for each of
the below.
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(a) A sequence of continous functions that converges to zero on [0, 1] but not uni-
formly

Problem ten has already proven this.

(b)

(c)
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