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To aide in our proofs, let’s create an equivalent definition of Riemann Integrable.

Definition 1. A function f : A→ R for A ⊂ Rn is Riemann Integrable if for all real ε > 0 there exists a partition
P of A such that

U(f, P )− L(f, P ) < ε

Note this is simply Theorem 3-3 of Spivak.

1 Problem 3 from Slides

Problem:
Prove that a continuous function f : A→ R where A ⊂ Rn and A = [a1, b1]× · · · × [an, bn] is Riemann Integrable.

Solution:
We will make use of Definition 1 for an easier proof. So let ε > 0. Define η > 0 so that

η
∏
i

(bi − ai) < ε (1.1)

Because A is compact and f continuous on A, then f is uniformly continuous on A. Hence there is a δ > 0 such
that |x− y| < δ implies

|f(x)− f(y)| < η (1.2)

for all x, y ∈ A. Now define a partition P = (P1, . . . , Pn) of A by Pi = {ai, ai + ki, ai + 2ki} where ki = bi−ai
m and

m is an integer chosen so that bi − ai < m δ√
n

for all i. Defining P in this way means that any two points x, y

contained in the same rectangle S ∈ P will have

|x− y| <

√(
δ√
n

)2

+ · · ·+
(

δ√
n

)2

=

√
n

(
δ√
n

)2

= δ

Hence, by equation 1.2 we have
MS(f)−mS(f) < η (1.3)

due to f attaining its maximum and minimum value on the compact set S. Finally, through the use of equations
1.1 and 1.3 we obtain

U(f, P )− L(f, P ) =
∑
S∈P

MS(f) v(S)−
∑
S∈P

mS(f) v(S)

=
∑
S∈P

(MS(f)−mS(f)) v(S)

< η
∑
S∈P

v(S)

= η
∏
i

(bi − ai)

< ε

as desired.

2 Problem 4 from Slides

Problem:
Let A ⊂ Rn and denote it by A = [a1, b1]× · · · × [an, bn]. Show that if f : A→ R has only finitely many points of
discontinuity, then it is Riemann integrable.

Solution:
Let ε > 0. We will show the existence of a partition P of A such that U(f, P )−L(f, P ) < ε. To ease notation and
therefore our proof, we define M = |f(x)| and define η > 0 so that

η v(A) < ε/2 (2.4)

both of which we will use shortly.
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Secluding Discontinuities. Let E = {x1, . . . , xk} be the points of discontinuity of f denoting each xi by
xi = (xi1, xi2, . . . , xin). Then define k closed squares A = {A1, . . . , Ak} by setting the length of the sides of each
square to ` where ` is chosen so that

` <
1

n
min
i,j
{|xi − xj |}

and
2Mk`n < ε/2 (2.5)

and then putting each Ai = [xi1− `
2 , xi1 + `

2 ]× · · · × [xin− `
2 , xin + `

2 ]. By defining Ai this way, the first restriction
on ` above ensures A1, . . . , Ak are mutually exclusive. The second restriction above simply allows an important
bound we’ll see shortly.

Partitioning A. Since E is covered byA and each point of E in the interior of an element ofA, thenK = A−∪iA◦i ,
where A◦i is the interior of Ai, is compact and has no intersection with E. Since f is continuous on A, it is continuous
on K, and thus uniformly continuous on compact K. Hence we can find a δ > 0 such that

|f(s)− f(t)| < η (2.6)

whenever |s− t| < δ for any s, t ∈ K. Now define a partition P = (P1, . . . , Pn) of A by

Pi = {ai, ai + ri, ai + 2ri, . . . , ai + (z − 1)ri, bi} ∪
{
x1i ±

`

2
, . . . , xmi ±

`

2

}
−
⋃
j

(
xji −

`

2
, xji +

`

2

)

where ri = bi−ai
z and z is an integer chosen so that bi−ai

z < δ for all i. Defining Pi in this manner ensures that no

point of
(
xji − `

2 , xji + `
2

)
, for any j, is contained in Pi and that all points outside of those intervals are at most

within a distance of δ of each other. This restriction on the distance yields

MS(f)−mS(f) < η (2.7)

for any S ∈ P −A due to equation 2.6.

Conclusion. Given our definition of P and because |MS(f)−mS(f)| ≤ 2M for any S ∈ P , we have the following
sequence of equations allotted to us by equations 2.4, 2.5, and 2.7

U(f, P )− L(f, P ) =
∑
S∈P
|MS(f)−mS(f)| v(S)

=
∑

S∈P−A
|MS(f)−mS(f)| v(S) +

∑
S∈A
|MS(f)−mS(f)| v(S)

<
∑

S∈P−A
η v(S) +

∑
S∈A
|MS(f)−mS(f)| v(S)

≤
∑

S∈P−A
η v(S) + 2M

∑
S∈A

v(S)

≤
∑

S∈P−A
η v(S) + 2M

∑
S∈A

`n

= η
∑

S∈P−A
v(S) + 2Mk`n

≤ η v(A) + 2Mk`n

< ε/2 + ε/2

= ε

yielding our desired bound.
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3 Problem 5 from Slides

Let f : A→ R and g : A→ R where A ⊂ Rn and A = [a1, b1]× · · · × [an, bn] both be Riemann Integrable.

(a) Show that f + g is Riemann Integrable

We first note that because for any bounded set S, MS and mS are just functions whose outputs are supremums
and infimums, respectively, then we have that

MS(f) +MS(g) ≥MS(f + g) (3.8)

and
mS(f) +mS(g) ≤ mS(f + g) (3.9)

implying that
(MS(f) +MS(g))− (mS(f) +mS(g)) ≥MS(f + g)−mS(f + g) (3.10)

This we state for later use.
So now let ε > 0. Since f and g are Riemann Integrable we can then find partitions P1 and P2 of A such that

U(f, P1)−L(f, P1) < ε/2 and U(g, P2)−L(g, P2) < ε/2. Putting P = P1∪P2 refines both P1 and P2 simultaneously,
thus yielding U(f, P )− L(f, P ) < ε/2 and U(g, P )− L(g, P ) < ε/2. Adding these inequalities gives us

(U(f, P )− L(f, P )) + (U(g, P )− L(g, P )) < ε

so that through application of equation 3.10 we get

ε > (U(f, P )− L(f, P )) + (U(g, P )− L(g, P ))

=
∑
S∈P

(MS(f)−mS(f)) v(S) +
∑
S∈P

(MS(g)−mS(g)) v(S)

=
∑
S∈P

((MS(f) +MS(g))− (mS(f) +mS(g))) v(S)

≥
∑
S∈P

(MS(f + g)−mS(f + g)) v(S)

= U(f + g, P )− L(f + g, P )

which implies that f + g is Riemann Integrable.

(b) Show that
∫
A
(f + g) =

∫
A
f +

∫
A
g

For any function h : A → R, partition P of A, and S ∈ P we have mS(h) ≤ MS(h). Thus equations 3.8 and 3.9
tell us that

mS(f) +mS(g) ≤ mS(f + g) ≤MS(f + g) ≤MS(f) +mS(g)

for f and g. Hence for any partition P of A,∑
S∈P

(mS(f) +mS(g)) v(S) ≤
∑
S∈P

mS(f + g) v(S) ≤
∑
S∈P

MS(f + g) v(S) ≤
∑
S∈P

(MS(f) +MS(g)) v(S)

which implies
L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P )

Since f and g are Riemann Integrable, then L(f, P ) + L(g, P ) and U(f, P ) + U(g, P ) can be brought arbitrarily
close to each other. Thus the above inequality implies that all of L(f + g, P ), L(f, P ) +L(g, P ), U(f, P ) +U(g, P ),
and U(f + g, P ) can be made arbitrarily close to each other by choosing an appropriate partition. Hence∫

A

(f + g) =

∫
A

f +

∫
A

g
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(c) For constant c, show that cf is Riemann Integrable

Let ε > 0. Since f is Riemann Integrable, we can find a partition P of A such that

U(f, P )− L(f, P ) <
ε

c

Since U(cf, P ) = cU(f, P ) and L(cf, P ) = cL(f, P ), then

U(cf, P )− L(cf, P ) = c (U(f, P )− L(f, P )) < c
(ε
c

)
= ε

so that cf is Riemann Integrable.

(d) For constant c, show that
∫
A
cf = c

∫
A
f

Since U(cf, P ) = cU(f, P ), then the Riemann Integrability of f and cf implies∫
A

cf = inf
P
U(cf, P ) = inf

P
(cU(f, P )) = c inf

P
U(f, P ) = c

∫
A

f

as desired.

4 Problem 6 from Slides

Problem:
Show that we can use open rectangles instead of closed rectangles in the definition of “measure zero” and the sets
that have measure zero will remain unchanged

Solution:
There is nothing really to prove to show that the open rectangle definition implies the closed rectangle definition
since a countable set of open rectangles is a subset of set of those rectangles’ closures, but have the same volume.

To prove that the closed rectangle definition implies the open rectangle definition, let A ⊂ Rn be a set of measure
zero using the closed rectangle definition. Let ε > 0. Then we can find a countable collection of closed sets {Vi}
that covers A such that ∑

i

v(Vi) <
ε

2

and denote each Vi by [ai1, bi1]×· · ·× [ain, bin]. Choose r > 0 so that (1 + r)n < 2 and define a countable collection
of open sets {Ui} by

Ui =
(
ai1 −

r

2
, bi1 +

r

2

)
× · · · ×

(
ain −

r

2
, bin +

r

2

)
for each i. Then with this definition we have Vi ⊂ Ui indicating that {Ui} is a cover of A by open rectangles. But
furthermore, the volume of each open rectangle is

v(Ui) =
∏
j

((
bij +

r

2

)
−
(
aij −

r

2

))
=
∏
j

((bij − aij) (1 + r)) = (1 + r)n
∏
j

(bij − aij) < 2 v(Vi)

implying that the volume of the entire collection is∑
i

v(Ui) <
∑
i

2 v(Vi) = 2
∑
i

v(Vi) < 2
(ε

2

)
= ε

which reveals that A has measure zero according to the open rectangle definition, as well.
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5 Problem 8 from Slides

Problem:
Show that if a < b, then the closed interval [a, b] ⊂ R does not have content zero.

Solution:
Since [a, b] is a closed rectangle of volume b − a, then any covering of it by closed rectangles must have a total
volume of at least b− a. Hence by setting ε = b− a there will never be a cover (finite or countably infinite) of [a, b]
by closed rectangles with total volume less than this ε. Hence [a, b] must not be a set of content zero.

6 Problem 9 from Slides

Problem:
Show that a compact set A ⊂ Rn has measure zero if and only if it has content zero.

Solution:
Let A be a compact set with measure zero. Let ε > 0, then in light of problem 4 there is an uncountable collection
of open rectangles U = {Ui} with v(U ) < ε. However, since A is compact there is a finite subcollection of U , say
Un1

, Un2
, . . . , Unk

, which covers A. Furthermore, this subcollection has the property

v (Un1
) + v (Un2

) + · · ·+ v (Unk
) ≤ v(U ) < ε

which implies that A has content zero.

The converse is trivial as content zero implies measure zero.

7 Problem 10 from Slides

Problem:
Show that the set A of rational numbers between 0 and 1 does not have content zero.

Solution:
Let V = {Vi} be a finite collection of n closed rectangles with total volume less than 1/2. Denote each Vi by [ai, bi]
and define j = argmini{ai}. Note we know j exists due to the finite cardinality of V . We then have two possible
scenarios.

1. aj > 0: If this is the case, then (0, aj) would be uncovered by V . Since A is dense in [0, 1] then there would
be a point of A contained in (0, aj) and hence not be covered by V .

2. aj ≤ 0: If this is the case, we may repeat our process developed here to determine if A ∩ (bj , 1) is covered
by V − Vj . Given that V is finite, we will have two eventualities; either we will come across the previous
case, or we will hit this current case for at most n times, ending when V is empty. If the former, we know
V does not cover A, but if the latter, then V will cover [0, x] and not (x,∞) for some x ≥ 0. However, given
that v(V ) < 1/2, then x < 1/2, i.e. V does not cover (1/2, 1). Since A is dense in [0, 1], then A ∩ (1/2, 1) is
nonempty and, furthermore, not covered by V .

Because all cases result in some subset of A remaining uncovered by V then there must be no finite set of closed
rectangles that cover A and have volume less than 1/2. Hence A does not have content zero.
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8 Problem 11 from Slides

Problem:
Let f : [a, b]→ R be an increasing function. Show that the set of all points x ∈ [a, b] where f is discontinuous has
measure zero.

Solution:
By Rudin’s Theorem 4.30, the set of points E in [a, b] where f is discontinuous is countable. So denote the points
of E by x1, x2, x3, . . .. Thus for any ε > 0 we can cover E with closed rectangles A1, A2, A3, . . . by

Ai =

[
xi − ε

1

2i+1
, xi + ε

1

2i+1

]
so that ∑

i

v(Ai) =

∞∑
i=1

ε
1

2i+1
= ε

∞∑
i=1

1

2i+1
=
ε

2
< ε

as desired.

9 Problem 12 from Slides

Problem:
Show that the bounded function f : A→ R is continuous at a ∈ A if and only if

o(f, a) = lim
r→0

(M(a, f, r)−m(a, f, r)) = 0

Solution:
First assume that f is continuous. Let ε > 0. Then we can find a δ > 0 such that |x−a| < δ implies |f(x)−f(a)| < ε

2
for all x ∈ A. Hence if r < δ then

|M(a, f, r)−m(a, f, r)| ≤ |M(a, f, r)− f(a)|+ |f(a)−m(a, f, r)| < ε

2
+
ε

2
= ε

In other words limr→0 (M(a, f, r)−m(a, f, r)) = 0

Conversely, assume that limr→0 (M(a, f, r)−m(a, f, r)) = 0. Let ε > 0. Then we can find δ > 0 such that r < δ
implies that |M(a, f, r)−m(a, f, r)| < ε. Hence for any x ∈ A with |x− a| < δ we have

|f(x)− f(a)| ≤ |M(a, f, |x− a|)−m(a, f, |x− a|)| < ε

so that f is continuous.
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10 Problem 13 from Slides

Problem:
Let A ⊂ Rn be a closed set and f : A→ R a bounded function. Show that the set {x ∈ A| o(x, f) ≥ ε} is closed for
any ε > 0.

Solution:
Let ε > 0 and put B = {x ∈ A| o(x, f) ≥ ε}. We show B is closed by showing it’s complement is open. Let
b ∈ Bc, in which case either b 6∈ A or both b ∈ A and o(f, b) < ε. If the former then since A is closed there’s a
neighborhood of b contained in Ac which is contained in Bc implying B is closed in this case. So assume the latter.
Then limr→0 (M(b, f, r)−m(b, f, r)) = ` for some ` with 0 ≤ ` < ε. Hence there exists a δ > 0 such that r < δ
implies M(b, f, r)−m(b, f, r)− ` < ε− `, i.e.

M(b, f, r)−m(b, f, r) < ε (10.11)

whenever r < δ. Let y ∈ Bδ/2(b) where Bδ/2(b) is the open ball around b of radius δ/2. Then we have Bδ/4(y) ⊂
Bδ/2(b) which together with equation 10.11 implies

M(y, f, r)−m(y, f, r) ≤M (b, f, δ/2)−m (b, f, δ/2) < ε

whenever r < δ/4. In other words,
lim
r→0

(M(y, f, r)−m(y, f, r)) < ε

Hence y ∈ Bc. Since y ∈ Bδ/2(b) was arbitrary, then Bδ/2(b) ⊂ Bc, implying that Bc is open and it’s complement
B is closed, as desired.

11 Problem 14 from Slides

Problem:
Let A ⊂ Rn be a closed rectangle and f : A→ R a bounded function such that for all x ∈ A, o(f, x) < ε for a fixed
ε > 0. Show that there is a partition P of A such that U(f, P )− L(f, P ) < ε v(A).

Solution:
Since o(f, x) < ε for all x ∈ A, then putting

`x = lim
r→0

(M(x, f, r)−m(x, f, r))

for each x ∈ A yields `x < ε, i.e. ε−`x > 0 for each x ∈ A. The above equation then implies that for each x ∈ A there
is a δx > 0 such that M(x, f, r)−m(x, f, r)−`x < ε−`x whenever r < δx, in other words M(x, f, r)−m(x, f, r) < ε
whenever r < δx. Thus by setting δ = infx{δx} we have

M(x, f, r)−m(x, f, r) < ε (11.12)

for all x ∈ A whenever r < δ. For later ease of notation, put η = δ/2, noting that therefore η < δ and so equation
11.12 applies for r = η.

Now denote A by [a1, b1]× · · · × [an, bn] and define a partition P = (P1, . . . , Pn) of A by setting

Pi = {ai, ai + ki, ai + 2ki, . . . , ai + (n− 1)ki, bi}

where we define ki = bi−ai
m , and m is chosen so that bi−ai < m (η/

√
2) for all i. Defining P in this way ensures that

each rectangle S ∈ P has sides of length less than η√
2
. This implies that for each such rectangle there’s an xS ∈ A
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with S ⊂ Bη(xS) where Bη(xS) is the open ball of radius η centered at xS . Hence equation 11.12 implies

U(f, P )− L(f, P ) =
∑
S∈P

(MS(f)−mS(f)) v(S)

≤
∑
S∈P

(M(xS , f, η)−m(xS , f, η)) v(S)

<
∑
S∈P

ε v(S)

= ε
∑
S∈P

v(S)

= ε v(A)

as desired.

12 Problem 20 from Slides

Define f : R→ R by

f(x) =

{
e−x

−2

x > 0
0 x ≤ 0

and define g : R→ R by
g(x) = f(x− a)f(b− x)

for some real numbers a < b.

(a) Prove that f is of class C∞

We will prove that all orders of derivatives of f have the form p(x)f(x) where p(x) is a polynomial. Doing this
shows that f is of class C∞ since the product of a polynomial and f is both differentiable and continuous. We first
see that as a base case f(x) = e−x

−2

is already of the form p(x)f(x) for p(x) = 1. So now let

f (n)(x) = p(x)f(x) (12.13)

for some polynomial p(x). Since f ′(x) = 2x−3f(x), then

f (n+1)(x) = p′(x)f(x) + p(x)f ′(x) = p′(x)f(x) + 2x−3p(x)f(x) =
(
p′(x) + 2x−3p(x)

)
f(x)

so that f (n+1)(x) is the product of f and a polynomial. The inductive hypothesis thus tells us that 12.13 holds for
all positive n, as desired.
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(b) Prove that g is of class C∞ and positive on (a, b) but zero elsewhere

We will prove that all orders of derivatives of g have the form p(x)g(x) where p(x) is a polynomial. Doing this
shows that g is of class C∞ since the product of a polynomial and g(x) is both differentiable and continuous. As a
base case we have that g(x) is already of the form p(x)g(x) for p(x) = 1. So now let

g(n)(x) = p(x)g(x) (12.14)

for some polynomial p(x). Since g′(x) = (2(x− a)−3 − 2(b− x)−3)g(x), then

g(n+1)(x) = p′(x)g(x) + p(x)g′(x)

= p′(x)g(x) + p(x)(2(x− a)−3 − 2(b− x)−3)g(x)

=
(
p′(x) + (2(x− a)−3 − 2(b− x)−3)p(x)

)
g(x)

so that g(n+1)(x) is the product of g and a polynomial. The inductive hypothesis thus tells us that 12.14 holds for
all positive n, as desired.

Furthermore, for any x0 ≤ a we have x0−a ≤ 0 so that f(x0−a) = 0 which in turn means g(x0) = 0. Likewise,
when x0 ≥ b then b− x0 ≤ 0 so that f(b− x0) = 0 implying g(x0) = 0. Finally, whenever x0 ∈ (a, b) we have both

0 < b − x0 and 0 < x0 − a implying that g(x0) = f(x0 − a)f(b − x0) = e−(x0−a)−2−(b−x0)
−2

> 0 so that g(x0) is
positive in this case.

(c)

Put

M =

∫ ∞
−∞

g(x)dx

and then define h : R→ R by

h(x) =
1

M

∫ x

−∞
g(x)dx

Show h is of class C∞

Since g ∈ C∞, then the fact that

h′(x) =
1

M
g(x)

implies that h is of class C∞.

Show h(x) = 0 for x ≤ a

According to the previous part of this problem, g(x) = 0 for x ≤ a, so that for some c ∈ R

h(x) =
1

M

∫ x

−∞
0dx =

1

M
0
∣∣x
−∞ =

1

M
(c− c) = 0

whenever x ≤ a.
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Show 0 < h(x) < 1 for a < x < b

According to the previous part of this problem, g(x) > 0 for all x ∈ (a, b) and zero elsewhere. Hence∫ x

−∞
g(x)dx > 0 (12.15)

and ∫ ∞
x

g(x)dx > 0 (12.16)

Inequality 12.15 allows us to add the value on its left to both sides of inequality 12.16. Doing so yields our desired
upper bound. ∫ x

−∞
g(x)dx+

∫ ∞
x

g(x)dx >

∫ x

−∞
g(x)dx∫ ∞

−∞
g(x)dx >

∫ x

−∞
g(x)dx

M >

∫ x

−∞
g(x)dx

1 >
1

M

∫ x

−∞
g(x)dx

1 > h(x)

Furthermore, adding together 12.15 and 12.16 yields∫ x

−∞
g(x)dx+

∫ ∞
x

g(x)dx =

∫ ∞
−∞

g(x)dx > 0

so that M > 0. Combining this with inequality 12.15 gives us the lower bound we desire.

1

M

∫ x

−∞
g(x)dx >

1

M
(0)

1

M

∫ x

−∞
g(x)dx > 0

h(x) > 0

Show h(x) = 1 for x ≥ b

Since g(x) = 0 whenever x ≥ b, then for x ≥ b we have∫ x

−∞
g(x)dx =

∫ ∞
−∞

g(x)dx∫ x
−∞ g(x)dx∫∞
−∞ g(x)dx

= 1

1

M

∫ x

−∞
g(x)dx = 1

h(x) = 1
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(d)

Let a, b ∈ R be such that a < b. Define a function k : Rn → R by

k(x) = 1− h(|x|)

Then given the properties of h we proved above, we obtain the following properties of k:

• When |x| ≤ a h(|x|) = 0 so that k(x) = 1− 0 = 1

• When a < |x|b 0 < h(|x|) < 1 so that

0 >− h(x) > −1

1 >1− h(x) > 0

1 >k(x) > 0

• When |x| ≥ b h(|x|) = 1 so that k(x) = 1− 1 = 0

Furthermore, since the partial derivative of k with respect to xi is

∂

∂xi
k =

xi
|x|
h′(|x|)

then the fact that h is of class C∞ implies that k is also of the class C∞, as desired.
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