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Problems

P-1 Munkres §19 exercise 6

Let {xi} be a sequence in
∏
Xα and x and element of

∏
Xα.

Assume that {xi} converges to x. Let N be a neighborhood of πβ(x) for some β in the index set of
∏
Xα. Then

U ⊂
∏
Xα where πβ(U) = N and πα(U) = Xα for α 6= β is a neighborhood of x since it is open in the product

topology and contains x. Hence there are infinitely many xj of {xi} which are also in U , however each xj has that
πβ(xj) ∈ πβ(U) = N . Thus N contains infinitely many points of {πβ(xi)}i, so πβ(xi)→ πβ(x).

Conversely, assume that for all β in the index set of
∏
Xα the sequence {πβ(xi)} converges to πβ(x). Let V be

a neighborhood of x. Then there is a basis element B of
∏
Xα with x ∈ B ⊂ V . Being in the product topology,

only finitely many coordinates of B are sets which are not Xα. Letting πα1
(B), . . . , παm

(B) be these sets, we have,
by assumption, that there exist N1, . . . , Nm such that all n ≥ Nj has that παj (xn) ∈ παj (B). Thus if we set

N = max{Nj} (P-1.1)

then πα(xn) ∈ πα(B) for all α in {α1, . . . , αm} and n ≥ N . From this we get that xn ∈ B ⊂ V for all n ≥ N , which
implies the convergence of {xi} to x.

Does the same hold for the box topology? The latter half of the above proof is dependent on the finititude
of the number of coordinate sets in a given basis element of the product topology on

∏
Xα. As exemplified by the

following scenario, the box topology may disallow such an N as in P-1.1 above.
Let

∏
Xα be Rω with the box topology and define the sequence {xi} by xi = (1/i, 2/i, 3/i . . .). So for any

coordinate j, (πj(x1), πj(x2), πj(x3), . . .) = (j/1, j/2, j/3, . . .) and certainly the right hand side converges to 0. Thus
x = (0, 0, 0, . . .) will have the property that for each j, πj(xi) → πj(x). However, for the neighborhood B =
(−1, 1) × (−1, 1) × (−1, 1) × · · · of x = (0, 0, 0, . . .) there exists no N such that all n ≥ N has xn ∈ B since
πN (xN ) = N/N = 1 6∈ (−1, 1) and thus xN 6∈ B.

P-2

The proof of the first part of Munkres’ Theorem 20.4 shows that Tprod ⊂ Tuniform ⊂ Tbox. So it only remains to be
shown that the box topology has a basis element for which no basis element of the uniform topology is contained
within, and that the uniform topology contains a basis element for which no basis element of the product topology
is contained within.

In the case of RJ where J is infinite, set B to be a basis element of the box topology defined as follows: for each
n ∈ Z+ there exists a unique α ∈ J such that πα(B) = (−1/n, 1/n) and if α′ is not such an α, then πα′(B) = R.
Note that for the following example the α ∈ J for which πα(B) = R and for which πα(B) 6= R do not matter, just
that there are a countably infinite number of them. So for 0 ∈ B, the sequence of all zeros, there is no open ball
Bρ(0, r) of the uniform topology such that 0 ∈ Bρ(0, r) ∈ B since for any n such that 1/n < r, an α ∈ J can be

found such that Bd(0, r) 6⊂ πα(B) = (− 1/n, 1/n), since, say, r+1/n
2 is in Bd(0, r) but not in (− 1/n, 1/n). Thus the

uniform and box topologies are different.
To see that the uniform topology on RJ is different from the product topology, we need only look at an open

ball of the uniform topology with radius r < 1. This will be the set
∏
αBd(xα, r) for some center (xα), but no basis

element of the product topology can be contained within this set since no basis element B of the product topology
can have more than a finitie number of α ∈ J with πα(B) 6= R.
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Figure 1: An arbitrary ball of the metric d′.

P-3 Munkres §20 exercise 1(a)

Let d′ : Rn × Rn → R be the function defined by

d′(x,y) = |x1 − y1|+ · · ·+ |xn − yn|.

With this definition we see that d′ is a metric by

(1) d′(x,x) = 0 since xi − xi = 0

(2) d′(x,y) > 0 for all x 6= y since d′ is the sum of absolute values

(3) d′(x,y) = d′(y,x) since |xi − yi| = |yi − xi| for each i

(4) d′(x, z) ≤ d′(x,y) + d′(y, z) since d′(x,y) + d′(y, z) = d(x1, y1) + · · ·+ d(xn, yn) + d(y1, z1) + · · ·+ d(yn, zn) =(
d(x1, y1) + d(y1, z1)

)
+ · · · +

(
d(xn, yn) + d(yn, zn)

)
≥ d(x1, z1) + · · · + d(xn, zn) = d′(x, z), where d is the

euclidean metric on R.

Now that we have that d′ is indeed a metric we can compare its induced topology with that of the square metric,
ρ, on Rn via Munkres’ Lemma 20.2. Clearly for any x,y ∈ Rn

ρ(x,y) = max
i
{|xi − yi|} ≤

∑
i

|xi − yi| = d′(x,y) (P-3.2)

and
d′(x,y) =

∑
i

|xi − yi| ≤ nmax
i
{|xi − yi|} = nρ(x,y) (P-3.3)

By Equation P-3.2, inside of any ε-ball Bρ(x, ε) is one Bd′(x, ε). So Munkres’ Lemma 20.2 tells us that the topology
induced by d′ is finer than the one induced by ρ.

By Equation P-3.3, any Bd′(x, ε) has a Bρ(x, ε/n) contained within it. Again turning to Munkres’ Lemma 20.2,
we get that the topology induced by ρ is finer than that of d′.

Given the above two results, d′ and ρ induce the same topology on Rn, that is, the usual topology.

Sketching. Figure 1 shows a ball for the metric d′ in R2. It is no particular ball.

P-4 Munkres §23 exercise 2

Let {An} be a collection of connected subspaces of X such that An ∩An+1 6= ∅. For our base case, A1 is connected
by assumption. Assume that for 1 through n−1 we have

⋃
i=1,...,n−1Ai is connected. Assume for later contradiction

that C,D separate
⋃
An. By Munkres Lemma 23.2,

⋃
i=1,...,n−1Ai is contained within C or D, so without loss

of generality allow
⋃
i=1,...,n−1Ai ⊂ C. By the same Lemma, An must also be contained within one of C or D,

however, An has nonempty intersection An−1 and therefore with
⋃
i=1,...,n−1Ai as well. Thus since

⋃
i=1,...,n−1Ai

is contained in C, An must also be, thereby yielding that D actually is the emptyset. This contradicts C and D
separating

⋃
An and therefore

⋃
An must be connected.

Rush 3



Extra

EX-1

Our motivation for this is to envision that there is a circular, impenetrable barrier around the origin of R2. Normally,
one would represent “impenetrable” mathematically through the use of ∞, in our case we would set the distance
between certain points to ∞ but since the range of a metric must be R this cannot be done. So we turn to the
standard bounded metric d corresponding to the euclidean metric on R2 for aide as it facilates a pseudo-infinity.

Let C be the disc centered at the origin, {(x, y) ∈ R2 : |x| + |y| ≤ 1/2}. Define d (our metric in question) on
R2 by the following

d(x,y) =

 d(x,y) x ∈ C and y ∈ C
d(x,y) x 6∈ C and y 6∈ C
2 otherwise

This 2 acts as our infinity, since the standard bounded metric has a maximum value of 1; regarding our original
motivation, this metric makes the border of C “impenetrable” resulting in “infinite” distance of 2.

Metric Proof. Despite calling it a metric already, we have yet to prove that d is indeed one. Alas it is:

(1) d(x,x) = 0 since x ∈ C or not, but in both cases d(x,x) = d(x,x) = 0

(2) d(x,y) > 0 for all x 6= y since d is d if x and y are both inside of or both outside of C, else d(x,y) = 2

(3) d(x,y) = d(y,x) since d is d if x and y are both inside of or both outside of C, else d(x,y) = 2 and d(y,x) = 2

(4) d obeys the triangle inequality for x,y, z as the following “truth” table demonstrates, where for x,y, z 0 means
outside of C and 1 means inside of C.

x y z d(x,y) d(y, z) d(x, z) Does triangle inequality hold?

0 0 0 d(x,y) d(y, z) d(x, z) yes

0 0 1 d(x,y) 2 2 yes

0 1 0 2 2 d(x, z) yes

0 1 1 2 d(y, z) 2 yes

1 0 0 2 d(y, z) 2 yes

1 0 1 2 2 d(x, z) yes

1 1 0 d(x,y) 2 2 yes

1 1 1 d(x,y) d(y, z) d(x, z) yes

The Finale. Now with this metric d we can set B1 = Bd
(
(0, 0), 3/4

)
and B2 = Bd

(
(1/2, 0), 7/8

)
. So both (0, 0) and

(1/2, 0) are in C, and clearly B1 = C and B2 ⊂ C since they cannot contain any points outside of C due to their
radii being less than 2. However despite the fact that B2 has a larger radius of 7/8, it doesn’t contain the point
(−1/2, 0) of C since this is of distance 1 away from the center of B2, (0, 1/2). Hence B2 ( B1.
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