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Problems

1 Munkres §26 exercise 8

Let f: X — Y be a function with Y a compact Hausdorff space, and define the graph of f to be the set
Gy={azx f(z)|ze X}

Continuity of f implies G is closed. Assume that f is a continuous map. All elements of the set X x Y \ Gy
have the form (z, f(2’)) where x # 2’ given the definition of G¢. Let N = U x V be a neighborhood of (z, f(z')).
If there is an xg such that (xg, f(zo)) is contained within N then we can separate f(zg) and f(z’) with open sets
according to the Hausdorff condition of Y, and replace V with V' where V' is the neighborhood containing f(z').
This yields a new neighorhood N’ = U x V' of (z, f(2')) which doesn’t contain (xo, f(zo)). Doing this for all such
(zo, f(z0)) in N will return to us a neighborhood of (z, f(2’)) which is disjoint from Gy. Thus X x Y \ Gy is open,
and therefore G is closed.!

G being closed implies continuity of f. Assume that G is a closed subset of X xY". Let V' be a neighborhood
of f(zo) for some point zy € X. Then Y \ V is a closed set yielding that B = Gy N (X x (Y \ V)) is also closed.
Since Y is compact, then by Munkres exercise 26.7 71 (B) is closed as well. Now because B is the set of all points
x %X f(x) where f(x) ¢ V, then U = X \ m1(B) is a neighborhood of xy as f(xo) € V and furthermore U € f(X).
Thus by Munkres Theorem 18.3 gives us that f is continuous.

2 Munkres §27 exercise 5

Some thoughts for this proof where inspired by Rudin’s proof of the uncountability of nonempty perfect sets in R™
[1, Theorem 2.43 pg. 41]

Let {A,} be a countable collection of closed subsets of a compact Hausdorff set X. Assume that each set in
the collection has empty interior. For later contradiction assume that UA,, has nonempty interior, U. Let {z,} be
a sequence of points where each z,, is some point of A,,. We associate with this sequence, a sequence of subsets
of U where V] is an open, nonempty subset of U such that x; ¢ V; and each V,, is an open, nonempty subset of
V,—1 such that z, € V,,. We can find such a V,, for each z,, because of the foundation layed for us by step one of
Munkres proof of Theorem 27.7 for a compact Hausdorff space such as X. Note that we need not concern ourselves
with whether or not each x,, is an isolated point as it is not contained in U since each A,, has no interior.

Now since each element of {V,,} is nonempty and V,, C V,,_; C --- C Vi, then each element of {V,,} is also
nonempty and V,, C V,,_1 C --- C V; yielding that {7”} is a collection of closed sets with the finite intersection

property. Since our space, X, is compact V = NV, is therefore nonempty.

However, since each x,, is not in V, then by Munkres Lemma 26.4 we can find an open U,, containing V' with
T, & U,. This implies that no limit point of V' can be contained in any A,, but since each A,, has no interior than
no interior point of V' can be contained within any A,,. Thus V has no interesection with UA,,, which contradicts
the nonemptiness of V since V' C UA,,. Therefore we must have that the interior of UA,,, U, is empty.

3 Munkres §28 exercise 6

Let f be an isometry on a compact metric space X.

f is continuous. An isometry is continuous, easily seen by the plain, old ed—definition of continuity on a metric
space since for any € we can set § = € and we will get that

d(z,y) <6 = (f(2),f(y)) <e
since d(z,y) = d(f(z), f(y))-

11 didn’t use the continuity of f, which scares me, but it doesn’t look like anything is wrong. Please advise.
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f is injective If z and y are in X such that f(z) = f(y), then we have that d(f(z), f(y) = 0, but because f is
an isometry, then this yields d(z,y) = 0 which can only be the case if z = y.

f is surjective For later contradiction, assume that f is not surjective. Then there is some a € X with a & f(X).
Then since X is Hausdorff and f(X) is compact (it’s the continuous image of X), then Munkres Lemma 26.4 allows
us to find an € such that the e-neighborhood of a is disjoint from f(X). With this in mind, we construct a sequence
recursively by defining x,, to be f(z,—_1) and with a base case of 21 = a. Hence for any points x;, z; of the sequence
with ¢ < j

d(zs, ;) = d(f(zi-1), f(xj-1)) = d(f o f(zi2), [ o f(zj-2))---=d(fo---0f(a), fo- o f(a))
— ——
i—1 j—1
by the definition of the sequence, and has
d(fo---of(a),fo---of(a)) =d(a,fo- o f(a))
— — ———
i—1 j—1 Jj—t
by the isometric property of f. However, the distance from a to any point of the image of f is greater than or equal
to €, so d(x;,x;) > €, indicating that this particular sequence has no limit point. This contradicts the compactnes
of X as it would imply that X would not be limit-point compact. Hence f must be surjective.
Finally, we have that f is a continuous bijection from X to itself. This gives us that f~1 too is continuous, and so
f is a homeomorphism.
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