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Problems

1 Munkres §26 exercise 8

Let f : X → Y be a function with Y a compact Hausdorff space, and define the graph of f to be the set

Gf =
{
x× f(x) | x ∈ X

}
Continuity of f implies Gf is closed. Assume that f is a continuous map. All elements of the set X×Y \Gf

have the form (x, f(x′)) where x 6= x′ given the definition of Gf . Let N = U × V be a neighborhood of (x, f(x′)).
If there is an x0 such that (x0, f(x0)) is contained within N then we can separate f(x0) and f(x′) with open sets
according to the Hausdorff condition of Y , and replace V with V ′ where V ′ is the neighborhood containing f(x′).
This yields a new neighorhood N ′ = U × V ′ of (x, f(x′)) which doesn’t contain (x0, f(x0)). Doing this for all such
(x0, f(x0)) in N will return to us a neighborhood of (x, f(x′)) which is disjoint from Gf . Thus X × Y \Gf is open,
and therefore Gf is closed.1

Gf being closed implies continuity of f . Assume that Gf is a closed subset of X×Y . Let V be a neighborhood
of f(x0) for some point x0 ∈ X. Then Y \ V is a closed set yielding that B = Gf ∩ (X × (Y \ V )) is also closed.
Since Y is compact, then by Munkres exercise 26.7 π1(B) is closed as well. Now because B is the set of all points
x × f(x) where f(x) 6∈ V , then U = X \ π1(B) is a neighborhood of x0 as f(x0) ∈ V and furthermore U ∈ f(X).
Thus by Munkres Theorem 18.3 gives us that f is continuous.

2 Munkres §27 exercise 5

Some thoughts for this proof where inspired by Rudin’s proof of the uncountability of nonempty perfect sets in Rn

[1, Theorem 2.43 pg. 41]
Let {An} be a countable collection of closed subsets of a compact Hausdorff set X. Assume that each set in

the collection has empty interior. For later contradiction assume that ∪An has nonempty interior, U . Let {xn} be
a sequence of points where each xn is some point of An. We associate with this sequence, a sequence of subsets
of U where V1 is an open, nonempty subset of U such that x1 6∈ V1 and each Vn is an open, nonempty subset of
Vn−1 such that xn 6∈ Vn. We can find such a Vn for each xn because of the foundation layed for us by step one of
Munkres proof of Theorem 27.7 for a compact Hausdorff space such as X. Note that we need not concern ourselves
with whether or not each xn is an isolated point as it is not contained in U since each An has no interior.

Now since each element of {Vn} is nonempty and Vn ⊂ Vn−1 ⊂ · · · ⊂ V1, then each element of {Vn} is also
nonempty and Vn ⊂ Vn−1 ⊂ · · · ⊂ V1 yielding that

{
Vn
}

is a collection of closed sets with the finite intersection

property. Since our space, X, is compact V = ∩Vn is therefore nonempty.
However, since each xn is not in V , then by Munkres Lemma 26.4 we can find an open Un containing V with

xn 6∈ Un. This implies that no limit point of V can be contained in any An, but since each An has no interior than
no interior point of V can be contained within any An. Thus V has no interesection with ∪An, which contradicts
the nonemptiness of V since V ⊂ ∪An. Therefore we must have that the interior of ∪An, U , is empty.

3 Munkres §28 exercise 6

Let f be an isometry on a compact metric space X.

f is continuous. An isometry is continuous, easily seen by the plain, old εδ−definition of continuity on a metric
space since for any ε we can set δ = ε and we will get that

d(x, y) < δ =⇒ (f(x), f(y)) < ε

since d(x, y) = d(f(x), f(y)).

1I didn’t use the continuity of f , which scares me, but it doesn’t look like anything is wrong. Please advise.
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f is injective If x and y are in X such that f(x) = f(y), then we have that d(f(x), f(y) = 0, but because f is
an isometry, then this yields d(x, y) = 0 which can only be the case if x = y.

f is surjective For later contradiction, assume that f is not surjective. Then there is some a ∈ X with a 6∈ f(X).
Then since X is Hausdorff and f(X) is compact (it’s the continuous image of X), then Munkres Lemma 26.4 allows
us to find an ε such that the ε-neighborhood of a is disjoint from f(X). With this in mind, we construct a sequence
recursively by defining xn to be f(xn−1) and with a base case of x1 = a. Hence for any points xi, xj of the sequence
with i < j

d(xi, xj) = d(f(xi−1), f(xj−1)) = d(f ◦ f(xi−2), f ◦ f(xj−2)) · · · = d(f ◦ · · · ◦ f︸ ︷︷ ︸
i−1

(a), f ◦ · · · ◦ f︸ ︷︷ ︸
j−1

(a))

by the definition of the sequence, and has

d(f ◦ · · · ◦ f︸ ︷︷ ︸
i−1

(a), f ◦ · · · ◦ f︸ ︷︷ ︸
j−1

(a)) = d(a, f ◦ · · · ◦ f︸ ︷︷ ︸
j−i

(a))

by the isometric property of f . However, the distance from a to any point of the image of f is greater than or equal
to ε, so d(xi, xj) ≥ ε, indicating that this particular sequence has no limit point. This contradicts the compactnes
of X as it would imply that X would not be limit-point compact. Hence f must be surjective.

Finally, we have that f is a continuous bijection from X to itself. This gives us that f−1 too is continuous, and so
f is a homeomorphism.
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