Math 500: Topology Homework 7

Lawrence Tyler Rush <me@tylerlogic.com>

(1) \mathbb{R}^n

- (a) **connected:** Yes, it is the finite product of a connected set, \mathbb{R} .
- (b) path connected: Yes, the straight line between any two points will be continuous.
- (c) metrizable: Yes, using the euclidean or square metric. Munkres Theorem 20.3
- (d) **compact:** No, \mathbb{R} is not even compact, so \mathbb{R}^n is not.
- (e) T_1 : Yes, it's metrizable.
- (f) T_2 : Yes, it's metrizable.
- (g) T_3 : Yes, it's metrizable.
- (h) T_4 : Yes, it's metrizable.
- (i) first-countable: Yes, it's metrizable.
- (j) **second-countable:** Yes, it is the finite product of the second countable set \mathbb{R} .
- (k) locally Euclidean: Yes, it is \mathbb{R}^n .

(2) \mathbb{R}_d

- (a) connected: No, every set is clopen.
- (b) **path connected:** No, because its not connected.
- (c) **metrizable:** Yes, given by the discrete metric.
- (d) **compact:** No, this is finer than \mathbb{R} and \mathbb{R} is not compact.
- (e) T_1 : Yes, it's metrizable.
- (f) T_2 : Yes, it's metrizable.
- (g) T_3 : Yes, it's metrizable.
- (h) T_4 : Yes, it's metrizable.
- (i) first-countable: Yes, it's metrizable.
- (j) second-countable: No, it is finer than \mathbb{R}_{ℓ} and that is not second-countable.
- (k) **locally Euclidean:** Yes, any open set of \mathbb{R} will be an open set here. So every open neighborhood of any element of \mathbb{R}_d has a neighborhood which is open in \mathbb{R} .

- (a) connected: No, $[-\infty, x)$ and $[x, +\infty)$ are open sets that separate the space for any $x \in \mathbb{R}_{\ell}$.
- (b) path connected: No, because it is not connected.
- (c) **metrizable:** Yes, in each lower limit basis element we can fit an open ball of the euclidean metric, and vice versa.
- (d) **compact:** No, $\{[-n, n) \mid n \in \mathbb{Z}^+\}$ has no finite subcover.
- (e) T_1 : Yes, it's metrizable.
- (f) T_2 : Yes, it's metrizable.
- (g) T_3 : Yes, it's metrizable.
- (h) T_4 : Yes, it's metrizable.
- (i) first-countable: Yes, it's metrizable.
- (j) second-countable: No, section 30 example 3.
- (k) locally Euclidean: Yes, locally 1-euclidean. For any $x \in \mathbb{R}_{\ell}$ the set $\bigcup_n [x 1 + \frac{1}{n}, x + 1)$ contains x, is open in \mathbb{R}_{ℓ} , and equals the open set of \mathbb{R} , (x 1, x + 1).

(4) \mathbb{R}_{fc}

- (a) **connected:** Yes, a non-trivial clopen set would need to be finite and infinite, which isn't possible. Thus there are no non-trivial clopen sets.
- (b) **path connected:** Yes, the constant function on \mathbb{R} will satisfy the requirements.

Rush 2

⁽³⁾ \mathbb{R}_{ℓ}

- (c) **metrizable:** No, not Hausdorff.
- (d) **compact:** Yes, any element of an open cover, \mathcal{A} , will have a finite number of elements not contained in it, so we only need to select a finite number of other elements from \mathcal{A} to cover the entire space.
- (e) T_1 : Yes, one point sets are finite, so their complements are open, so they are closed.
- (f) T_2 : No, since no open sets in $\mathbb{R}_f c$ are disjoint.
- (g) T_3 : No, not Hausdorff.
- (h) T_4 : No, not Hausdorff.
- (i) **first-countable:** No. Assume for contradiction that $\{A_i\}$ is a countable basis at x. Then $U = \bigcup_i \{\mathbb{R} \setminus A_i\}$ is a countable collection of points since it is a countable union of finite sets. Then for any $y \in \mathbb{R} \setminus U$ $(\mathbb{R} \setminus U$ is nonempty since \mathbb{R} is uncountable), $\mathbb{R} \setminus \{y\}$ is open in \mathbb{R}_{fc} but contains no A_i .
- (j) second-countable: No, since it is not first countable.
- (k) **locally Euclidean:** Yes, every neighborhood of a point x is an open set in \mathbb{R} since finite sets are closed in \mathbb{R} . Thus each x has a neighborhood homeomorphic to an open set of \mathbb{R} .

(5) S^1

- (a) **connected:** Yes, it is path connected.
- (b) **path connected:** Yes, Section 24 example 5.
- (c) **metrizable:** Yes, the magnitude of the acute angle between two points in the set.
- (d) **compact:** Yes, closed and bounded subset of \mathbb{R}^2 , so compact by Heine-Borel.
- (e) T_1 : Yes, it's metrizable.
- (f) T_2 : Yes, it's a subspace of the Hausdorff space \mathbb{R}^2 .
- (g) T_3 : Yes, it's normal.
- (h) T_4 : Yes, it's Hausdorff and compact.
- (i) **first-countable:** Yes, it's metrizable.
- (j) second-countable: Yes, it's a subspace of a second countable space, \mathbb{R}^2 .
- (k) locally Euclidean: Yes, it's a subspace of a \mathbb{R}^2 .

(6) $\mathbb{R} \times \mathbb{R}$, dictionary

- (a) **connected:** Yes, it is path connected.
- (b) **path connected:** Yes, the straight line between any two points will be continuous.
- (c) **metrizable:** Yes, Section 50 supplementary exercise 4.
- (d) **compact:** No, since it is Hausdorff, being compact would imply that it is an *m*-manifold, but it is not due to Section 50 exercise 2.
- (e) T_1 : Yes, this is locally euclidean.
- (f) T_2 : Yes, this is normal.
- (g) T_3 : Yes, this is normal.
- (h) T_4 : Yes, this is an order topology.
- (i) first-countable: Yes, it's metrizable.
- (j) second-countable: No, Section 50 exercise 4.
- (k) locally Euclidean: Yes, it is 1-euclidean.
- (7) \mathbb{R}^{ω} , product topology
 - (a) **connected:** Yes, Section 23 example 7.
 - (b) **path connected:** ???
 - (c) metrizable: Yes, Munkres Theorem 20.5.
 - (d) **compact:** No, \mathbb{R} is not compact.

- (e) T_1 : Yes, it's metrizable.
- (f) T_2 : Yes, it's metrizable.
- (g) T_3 : Yes, it's metrizable.
- (h) T_4 : Yes, it's metrizable.
- (i) first-countable: Yes, it's metrizable.
- (j) second-countable: Yes, since \mathbb{R} is second countable, by Munkres Theorem 30.2.
- (k) locally Euclidean: Yes, since it's metrizable.

(8) TSC

- (a) **connected:** Yes, Section 24 example 7.
- (b) **path connected:** No, Section 24 example 7.
- (c) metrizable: Yes, it's regular and second countable. (Urysohn's metrization theorem).
- (d) **compact:** Yes, it is a closed and bounded subset of \mathbb{R}^2 .
- (e) T_1 : Yes, it's metrizable.
- (f) T_2 : Yes, it's a subspace of the Hausdorff space \mathbb{R}^2 .
- (g) T_3 : Yes, it's normal.
- (h) T₄: Yes, it's compact and Hausdorff.
- (i) first-countable: Yes, it's metrizable.
- (j) **second-countable:** Yes, it's a subspace of the second countable space \mathbb{R}^2 .
- (k) locally Euclidean: Yes, it's a subspace of \mathbb{R}^2 .