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First, a helpful Lemma. Let S be defined as in the problem’s specification.
Lemma 1.1. The set S is nZ for some n € Nyg.

Proof. First note that S has positive elements, for if s € S and s # 0 (such an s exists since S has at least two
different elements), then either s is positive or s — 2s is; the latter being guaranteed to be in S due to the closure
of addition and subtraction.

As a subset of the well-ordered set N, the set S NN — {0}, must have a least element, call it n. Certainly all
integer multiples of n are in S as S is closed under addition and subtraction. So in the least,

nZc S (1.1)

Assume for later contradiction that there is an a € S for which n Jfa. Then the division algorithm, since n # 0,
yields the existence of ¢,r € Z with 0 < r < |n| such that a = gn 4 r. Therefore r = a — gn € S by the closure of
addition and subtraction on S. Since a was assumed to not be a multiple of n, then 0 < r < |n|, but this contradicts
the fact that n is the least element of SNN — {0}. Thus, no such a exists, moreover all elements of S are multiples
of n. Hence combining this with equation 1.1 leaves us with S = nZ. O

(a)

Given that S = nZ by Lemma 1.1, define f : N — NN S by

This is surjective since any element of NN S has the form mn and thus f will map m to it. The map is injective
because if f(m) = f(m’) for m,m’ € N, then nm = nm’ and thus m = m/. So f is a bijection.

Because multiplication by a nonzero natural number preserves order, then f is an order-preserving map as it
simply multiplies its input by the nonzero natural number n.

Finally to prove uniqueness, let g : N — NN S be an order-preserving bijection. We first note that g(0) = 0
because 0 is the least element of both N and N N S; any other output for g would contradict its given order-
preservation. Now assume that there exists an N such that for all k¥ with 0 < k < N we have g(k) = f(k). Define £
by £ = min{j € SNN | j > f(N) = mN}, remembering that S = nZ. We know £ exists since SNN is a subset of the
well-ordered set N. Thus f(k) = mk < £ for all k such that 0 < k < N, and therefore since f is an order-preserving
bijection, f(N) = ¢. However, the inductive hypothesis implies that g, being an order-preserving bijection, must
also have that g(N) = ¢. Hence g and f are one in the same.

(b)

The fact that every element of S is a multiple of f(1) follows directory from Lemma 1.1, the fact that n generates
nZ, and the construction of f, namely f(1) = n.

(c)

Let G be a cyclic group with subgroup H and generator g. If H is trivially {1}, then we are done, as 1 generates
H.

So assume that H has at least two distinct elements. Define S = {n | g” € H}. The set S then also has at least
two different elements. Now for n,m € S we have that ¢g", g™ € H which implies that g"¢g™ = ¢g"*™™ € H as H is
a group. Hence n +m € S implying the closure of S under addition. Also since H is a group, (¢™)" ' =g ™ € H
informing us that n—m € S. Hence S is closed under subtraction. In summary, S is a set with at least two different
elements which is closed under addition and subtraction.

Thus by parts (a) and (b) of this problem, we have a unique order-preserving map, f : N — S NN, for which
every element of S is an integer multiple of f(1). In other words, for every g™ € H, there is some integer a such
that ¢" = ¢*f() = (gf(l))a. Hence ¢/ generates H.
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(a)

Let a,b € Z be nonzero, and S C Z be the set {ar + bs | r,s € Z}. If a = b, then the existence of the greatest
common divisor of a,a is trivial since the a would be the integer such that any other integer which divides a also
divides a.

So let’s proceed assuming that a # b. With this, we know that S has at least two elements, thereby allowing
us to make use of the problem 1. So let fN — NN S be the unique order-preserving bijection, and define ¢ to be
f(1). So for any d that divides a and b, d will also divide every element of S. This will include ¢ since part (b) of
problem 1 states that ¢ generates all of S and c is therefore contained in S. So d divides c.

Relation of ged(a,b) to S The greatest common divisor of a,b is the value ¢ such that ¢ generates S = (a,b).

(b)

Let a, b be relatively prime non-zero integers and ¢ an integer such that albc. Let as + cr € {(a, ¢) for some s,r € Z.
Since a and b are relatively prime, their greatest common divisor is 1, meaning that (a,b) = (1) = Z. Therefore
r € {(a,b). However, for n,m € Z such that an+bm = r, this implies that as+cr = as+c(an+bm) = as+can+cbm.
Thus a divides as + cr, since a|bc, and therefore every element of (a, ¢), including a(0) + ¢(1) = ¢ is divisible by a.

(c)

We will define a prime according to Jacobson [Jac09, pg. 22] as an integer p # 0, +1 with +p and +1 being its only
divisors.

Every nonzero integer can be decomposed into +1p3* - - - pf,j”m We will first prove this for positive integers,
then for negative ones.

As a base case we have that for 1 or any positive prime p, the decomposition is 1 and p, respectively. So let
n € N be composite and assume that all natural numbers less than n can be decomposed as per above. Then we
can find positive integers ¢, < n such that gr = n. By the inductive hypothesis, then ¢ and r can be decomposed
into + a product powers of primes. Hence so can n, namely the decomposition produced by the product of the
decomposition of g and 7.

As for a negative integer, m, the above proof for decomposition of positive integers informs us that there is such
a decomposition for |m|, and thus simply negating the decomposition yields a decomposition for m.

The decomposition is unique. As a base case we have that for 1 or any positive prime p, the decomposition
1 and p, respectively, are unique. So let n € N be composite and assume that all natural numbers less than n
can be uniquely decomposed. Let p§'---pSe and ¢f' ---q{:b be decompositions of n. Therefore p; must divide

q{l e ql{b since both decompositions are equal, in other words, there is some ¢; equal to p;. Thus p?*l - pee and
q{l qf =1 ql{b are equal, but these integers are less than n, which our inductive hypothesis tells us that their

prime decompositions are unique. Therefore their multiplication by p; = ¢; will be unique decompositions of n.
As for a negative integer, m, the above proof for unique decomposition of positive integers informs us that there
is such a unique positive decomposition for |m|, and thus simply negating the it yields a unique decomposition for

m.t

nspiration for this proof drawn from [Jac09, pg. 22]
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Suppose that m,n are integers that are relatively prime. From problem two, we know that there exist integers u, v
such that um + vn = 1. From this we obtain that um + vn = 1 mod n, but since vn is a multiple of n this yields
um = 1 mod n. Similarly we obtain vn = 1 mod m. These two equations in turn give us that for some integers a, b,

bum=bmodn and avn=amodm (3.2)
As multiples of m and n, respectively, bum and avn have that
bum =0modm and avn=0modn
which when combined with Equation 3.2, yields
avn + bum = a mod m and avn + bum = b mod n

Thus the desired formula for ¢ is ¢ = avn + bum

4

(a)

Let a € N be a n 4+ 1 decimal digit number. Let the decimal digits of a be represented by dy, ds, ..., d, where each
d; is in {0,1,...,9} and dy corresponds to the lowest magnitude digit, and d,,, the highest. Then we have that

a= zn: d;10°
1=0

In class we saw that the canonical addition and multiplication operations in Z/97Z are compatible with the addition
and multiplication operations of the integers. This yields to us

a= (Z di10i> mod 9 = Z (d; mod 9) (10° mod 9) = Z (d; mod 9) (10 mod 9) - - - (10 mod 9)
i=0 i=0 i=0

7 times

however, 1 = 10 mod 9, leaving us with

a= z": (d; mod 9) = (i: di> mod 9
i=0 i=0

again using the compatibility of addition in Z/9Z with integer addition.

(b)

Let a € N be a n+ 1 decimal digit number. Let the decimal digits of a be represented by dy, d1, .. .,d, where each
d; is in {0,1,...,9} and dy corresponds to the lowest magnitude digit, and d,,, the highest.

Formula for 11 We can see that 10 is a unit of Z/11Z with order 2 in (Z/11Z)*. Therefore 10 = 10 mod 11
and 10%*+! = 1 mod 11 for integer i. We can also say that d; = 0 when i > n, and because of it, we can write

a= zn: d;10° = zn: doi10% + f: doiy110%F1
=0 =0 =0

which implies

a= (Z dpil0% + d2¢+1102i+1> mod 11 =Y ~dy; (10% mod 11)+Y _ daiyy (107 mod 11) =10 " dai+ > daita
=0 i=0 1=0 i=0 i=0 1=0
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Formula for 7 Similar to the above method for 11, 10 is a unit of Z/7Z with order 6 in (Z/7Z)™. Therefore

10 = 1mod7
10! = 3mod7
102 = 2mod?7
10° = 6mod7
10 = 4mod7
10° = 5mod?7

We can again also say that d; = 0 when ¢ > n, and because of it, we can write

a= Zdzloz _ Zdﬁzloﬁz +Zd6i+1106i+1 +Z d6i+2106i+2 +Zd6i+3106i+3 +Zd6i+4106i+4 +Zd6i+5106i+5
=0 =0 =0 =0 =0 =0 =0

which results in the following after modding by 7

n n n n n n
a= deii +3Zd6i+1 + QstiJ,-Q +6Zd6i+3 +4Zd6i+4 + 5Zd6i+5
1=0 =0 =0 1=0 =0 =0

(a) Prove Euler’s totient function is multiplicative

First, let m and n be coprime integers. Then problem 1 informs use that there are intgers r, s such that mr+ns =1
or in other words mr = n(—s) + 1, which implies mr = 1 mod n. Hence m € (Z/nZ)*.

Now let m € (Z/nZ)™. Then there exists some integer 7 such that mr = 1 mod (n). Then problem 1 implies
the existence of an s such that mr = ns + 1, i.e. mr +n(—s) = 1. Hence ged(m,n) = 1 and therefore m and n are
coprime.

Combining these two results implies that an integer m is coprime to an integer n if and only if ™ € (Z/nZ)
This allots us the following equation

X

o(n) = |(Z/nZ)* (5.3)

The multiplicativity of ¢ According to [Chal3] the Chinese Remainder Theorem tells us that for an integer
n > 2 with prime factorization n = pi* ---pte, Z/nZ is isomorphic to (Z/p7*Z) x --- x (Z/pSZ). This in turn
implies (Z/nZ)* is isomorphic to (Z/p{*Z)* x --- x (Z/p*Z)*. Let m and n be coprime with prime factorizations
pit - -pte and ¢t - ng , respectively. Therefore the prime factors of their prime factorization have that p; # ¢; for
each possible 4, j. Now according to equation 5.3, ¢(mn) = |Z/mnZ|, and thus we have the following sequence of

equations.
¢p(mn) = ‘(Z/ple)X X oo X (LS ) X (Z)q*Z)" X -+ X (Z/q{;bZ)><

(Z/q11Z>X X oo X (Z/ql{bZ>X'

= |@mrzy <o x @/pien)

‘(Z/mZ) x
d(m)d(n)

(Z/nZ)"

(b)

Let’s first examine the value of ¢(p°) for prime p and positive e (note negative e is pointless to consider as it isn’t
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an integer). The value of ¢(p¢) will be the number of integers between 1 and p® which are coprime to p€, but
the only such integers are the positive multiples of p less than or equal to p°. There are p°~! of them, namely
P,2p,3p, ..., (p°1)p. Hence, because there are p® postive integers less than or equal to p©

o(p°) =p° —p=pp—1) (5.4)

Given Equation 5.4 and the fact that ¢ is multiplicative from the previous part of the problem, then for any n
with prime decomposition of p'ps? - - - pém where each p; is distinct, we have the formula

d(n) = op(p7'ps -+ psyr) = d(p7)d(P3?) - s ) = p5 (pr — 1)ps2Hpo — 1) - pZr " H(pm — 1)

References

[Chal3] Ching-li Chai. Excursion in elementary number theory. http://www.math.upenn.edu/~chai/502£13/
course_notes/nber_thy.pdf, 2013.

[Jac09] Nathan Jacobson. Basic Algebra I. Basic Algebra. Dover Publications, Incorporated, 2009.

Rush 5


http://www.math.upenn.edu/~chai/502f13/course_notes/nber_thy.pdf
http://www.math.upenn.edu/~chai/502f13/course_notes/nber_thy.pdf

	
	
	
	

	
	
	
	

	
	
	
	

	
	Prove Euler's totient function is multiplicative
	


