Math 502: Abstract Algebra Homework 3

Lawrence Tyler Rush <me@tylerlogic.com>

January 5, 2014 http://coursework.tylerlogic.com/courses/upenn/math502/homework03

(a) Show that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is isomorphic to $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$.

Any element of $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ will map the identity element to itself because it is a homomorphism. Therefore, since $\mathbb{Z}/n\mathbb{Z}$ is cyclic, any automorphism will simply permute the non-identity elements. Hence for any $\varphi \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$, $\varphi(\overline{1}) = \overline{i}$ for some $i \in \{1, 2, \ldots, n\}$. However, because φ is a homomorphism, this completely dictates the mapping by φ of $\overline{2}, \overline{3}, \ldots, \overline{n}$, i.e.

$$\varphi(\overline{2}) = (\varphi(\overline{1}))^2 = \overline{2i}$$
$$\varphi(\overline{3}) = (\varphi(\overline{1}))^3 = \overline{3i}$$
$$\vdots$$
$$\varphi(\overline{n}) = (\varphi(\overline{1}))^n = \overline{ni}$$

Hence, by defining φ_i to be the automorphism of $\mathbb{Z}/n\mathbb{Z}$ that maps $\overline{1}$ to \overline{i} , we can then see that

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) = \{\varphi_i | \operatorname{gcd}(i, n) = 1\}$$

Note that we need the stipulation of i, n being coprime because if j is not coprime to n, then we would be able to find a 0 < k < n such that kj = n, i.e. \overline{j} wouldn't generate the group, and therefore φ_j would not be a bijection.

Since $(\mathbb{Z}/n\mathbb{Z})^{\times}$ are the units of $\mathbb{Z}/n\mathbb{Z}$, i.e. the equivalence classes of all the coprime numbers between 0 and n, then the above implies that this is in one-to-one correspondence with $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$. The bijection is $\phi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ defined by

 $\overline{i} \mapsto \varphi_i$

(b) Is $(\mathbb{Z}/5\mathbb{Z})^{\times}$ a cyclic group?

Yes it is cyclic; it is $\langle \overline{2} \rangle$.

 $\begin{array}{rcl} \overline{2}^0 &=& 1 \bmod 25 \\ \overline{2}^1 &=& 2 \bmod 25 \\ \overline{2}^2 &=& 4 \bmod 25 \\ \overline{2}^3 &=& 3 \bmod 25 \end{array}$

(c) Extra Credit: Is $(\mathbb{Z}/25\mathbb{Z})^{\times}$ a cyclic group?

Yes it is cyclic; it is $\langle 2 \rangle$, since 5, 10, 15, and 20 are all coprime to 25 (and therefore their equivalence classes are not

in $(\mathbb{Z}/25\mathbb{Z})^{\times}$

$\overline{2}^0$	=	$1 \bmod 25$
$\overline{2}^1$	=	$2 \bmod 25$
$\overline{2}^2$	=	$4 \bmod 25$
$\overline{2}^3$	=	$8 \bmod 25$
$\overline{2}^4$	=	$16 \mod 25$
$\overline{2}^5$	=	$7 \bmod 25$
$\overline{2}^6$	=	$14 \bmod 25$
$\overline{2}^7$	=	$3 \bmod 25$
$\overline{2}^{8}$	=	$6 \bmod 25$
$\overline{2}^9$	=	$12 \mod 25$
$\overline{2}^{10}$	=	$24 \mod 25$
$\overline{2}^{11}$	=	$23 \bmod 25$
$\overline{2}^{12}$	=	$21 \bmod 25$
$\overline{2}^{13}$	=	$17 \bmod 25$
$\overline{2}^{14}$	=	$9 \bmod 25$
$\overline{2}^{15}$	=	$18 \mod 25$
$\overline{2}^{16}$	=	$11 \bmod 25$
$\overline{2}^{17}$	=	$22 \mod 25$
$\overline{2}^{18}$	=	$19 \bmod 25$
$\overline{2}^{19}$	=	$13 \mod 25$

(d) Extra Credit

$\mathbf{2}$

Let T be the set of diagonal matrices in $\operatorname{GL}_2(\mathbb{R})$.

(a) Centralizer of T in $GL_n(\mathbb{R})$

For n = 2 Because of the following

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} ax & by \\ cx & dy \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} adx - bcy & ab(y - x) \\ cd(x - y) & -bcx + ady \end{pmatrix}$$

we know that for the above to be equal to $\begin{pmatrix} x \\ y \end{pmatrix}$, because the determinant ad - bc needs to be non-zero, that a and d need to both be zero and bc = -1, or b and c need to both be zero and ad = 1. Hence,

$$Z_{\mathrm{GL}_{2}(\mathbb{R})}(T) = \left\{ \left(\begin{array}{c} a \\ & 1/a \end{array} \right) \middle| a \neq 0 \right\} \bigcup \left\{ \left(\begin{array}{c} & b \\ & -1/b \end{array} \right) \middle| b \neq 0 \right\}$$

For n = 3

(b) Normalizer of T in $GL_n(\mathbb{R})$

For n = 2 For the following to be in T,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} ax & by \\ cx & dy \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} adx - bcy & ab(y - x) \\ cd(x - y) & -bcx + ady \end{pmatrix}$$

either a and d need to both be zero, or b and c need to both be zero, but exclusively so because the determinant, ad - bc, needs to be nonzero. Hence we have that

$$N_{\mathrm{GL}_2(\mathbb{R})}(T) = \left\{ \left(\begin{array}{cc} a & b \\ b & d \end{array} \right) \middle| b = c = 0 \text{ or } a = d = 0 \right\}$$

For n = 3

(c) Extra Credit

(d) Extra Credit

3

(a)

(b) Extra Credit

(c) Extra Credit

4 Classify all groups G where $Aut(G) = \{id_G\}$

Such a G must be abelian If G were not abelian, then there would be at least one non-identity element, g, outside of the center of G. The map $\sigma_g : G \to G$ defined by $\sigma_g(h) = ghg^{-1}$, i.e. conjugation by g, would then be an automorphism of G since there must exist at least one $h \in G$ such that $ghg^{-1} \neq h$ as $g \notin Z(G)$. Hence σ_g is a non-identity map contained in Aut(G).

 $\mathbf{5}$

(a) The trivial subspace and \mathbb{R}^2 are the only subspaces closed under left action by $\operatorname{GL}_2(\mathbb{R})$

It's clear that the trivial subspace and \mathbb{R}^2 are both closed subspaces under action by $GL_2(\mathbb{R})$. The only other subspaces of \mathbb{R}^2 are 1-dimensional, i.e. lines of \mathbb{R}^2 . So simply a rotation, by say π , like

$$\begin{pmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{pmatrix}$$

will take a vector in a 1-dimensional subspace outside of the subspace.

(b)

Functions are stable under action of the identity element. The first property of an action is satisfied by the following

$$\begin{pmatrix} 1 \\ & 1 \end{pmatrix} \cdot f(x,y) = f(1x+0y,0x+1y) = f(x,y)$$

The "associative" property of an action. Let $A, B \in GL_2(\mathbb{R})$ with

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \qquad \text{and} \qquad B = \left(\begin{array}{cc} m & n \\ q & r \end{array}\right)$$

Because this

$$\begin{aligned} A \cdot B \cdot f(x,y) &= A \cdot \begin{pmatrix} m & n \\ q & r \end{pmatrix} \cdot f(x,y) \\ &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(mx + qy, nx + ry) \\ &= f(m(ax + cy) + q(bx + dy), n(ax + cy) + r(bx + dy)) \\ &= f((ma + qb)x + (mc + qd)y, (na + rb)x + (nc + rd)y) \end{aligned}$$

is the same as

$$(AB) \cdot f(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} m & n \\ q & r \end{pmatrix} \cdot f(x,y)$$

$$= \begin{pmatrix} am + bq & an + br \\ cm + dq & cn + dr \end{pmatrix} \cdot f(x,y)$$

$$= f((am + bq)x + (cm + dq)y, (an + br)x + (cn + dr)y)$$

$$= f((am + qb)x + (mc + qd)y, (na + rb)x + (nc + rd)y)$$

then the "associative" property of an action holds for this action.

(c) Extra Credit

6 Is "is a normal subgroup" a transitive relation?

The "normality" relation is not transitive. In the group $D_{2(8)} = D_{16}$, we have $\langle s, r^2 \rangle \leq D_{16}$ and $\langle s, r^4 \rangle \leq \langle s, r^2 \rangle$, however, $\langle s, r^4 \rangle \leq D_{16}$.

The subgroup $\langle s,r^2\rangle$ is normal in D_{16} by

$$(s^{k}r^{j})(s^{\ell}r^{2i})(s^{k}r^{j})^{-1} = s^{k}r^{j}s^{\ell}r^{2i}r^{-j}s^{k} = s^{k}s^{\ell}r^{-j}r^{2i}r^{-j}s^{k} = s^{k+\ell}r^{2(i-j)}s^{k} = s^{2k+\ell}r^{2(j-i)} = s^{\ell}r^{2(j-i)} \in \langle s, r^{2} \rangle$$

and $\langle s,r^4\rangle$ is normal in $\langle s,r^2\rangle$ by

$$(s^k r^{2j})(s^\ell r^{4i})(s^k r^{2j})^{-1} = s^k r^{2j} s^\ell r^{4i} r^{-2j} s^k = s^{k+\ell} r^{-2j} r^{4i} r^{-2j} s^k = s^{k+\ell} r^{4(i-j)} s^k = s^{2k+\ell} r^{4(j-i)} = s^\ell r^{4(j-i)} \in \langle s, r^4 \rangle$$

but the following demonstrates that $\langle s,r^4\rangle \not\trianglelefteq D_{16}$

$$r(sr^4)r^{-1} = rsr^3 = sr^{-1}r^3 = sr^2 \notin \langle s, r^4 \rangle$$

References