Math 502: Abstract Algebra Homework 13

Lawrence Tyler Rush <me@tylerlogic.com>

January 5, 2014 http://coursework.tylerlogic.com/courses/upenn/math502/homework13 1

We first lay out a helpful lemma. ¹

Lemma 1.1. Let V be a vector space over F where F is \mathbb{R} or \mathbb{C} . If S and T are hermitian and ST = TS, then there is an orthogonal basis for S and T.

Proof. Let λ be an eigenvalue of T and set W to be the eigenspace with respect to lambda. Then the commutativity of ST and TS gives us that

$$TSw = STw = S(\lambda w) = \lambda(Sw)$$

for $w \in W$. In other words $Sw \in W$, implying that W is S-invariant. Now since T is hermitian, then W is 1-dimensional, implying that *lambda* is an eigenvalue for S and furthermore the eigenspace for S corresponding to λ is W. Since λ is arbitrary and both S and T are diagonalizable, then we know that there exists an orthogonal basis v_1, \dots, v_n .

Now for the main event. Let V be a vector space over F where F is \mathbb{R} or \mathbb{C} . Also let $(\cdot|\cdot)_1$ and $(\cdot|\cdot)_2$ be two distinct inner products on V. Due to Gram-schmitt, we can assume that $(\cdot|\cdot)_1$ is simply the standard inner product on V. So Then there exists hermitian, positive definite operators $T \in \text{End}_F(V)$ such that $(x|y)_2 = (Tx|y)_1$, and in the case of $(\cdot|\cdot)_1$, the hermitian operator corresponding to it is Id. Certainly T Id and Id T are commutative and T and Id are both hermitian. Hence Lemma 1.1 implies that we can find an orthogonal basis for the standard inner product, i.e. $(\cdot|\cdot)_1$, but because $(x|y)_2 = (Tx|y)_1$, then this will be othogonal with respect to both inner products.

2			
(a)			

(b)

Let $w \in \operatorname{Ker}(S - \lambda Id_W)$ then we have that $(S - \lambda Id_W)w = 0$, and so $Sw = Tw = \lambda w$, which implies that $w \in W(\lambda)$. Now assume that $w \in W(\lambda)$, then $Sw = Tw = \lambda w$, which implies that $w \in \operatorname{Ker}(S - \lambda Id_W)$. Hence $\operatorname{Ker}(S - \lambda Id_W) = W(\lambda)$.

We first factor $S^2 - (\lambda - \overline{\lambda})S + \lambda \overline{\lambda} \operatorname{Id}_W$.

$$S^{2} - (\lambda - \overline{\lambda})S + \lambda\overline{\lambda} \operatorname{Id}_{W} = S^{2} - \lambda S - \overline{\lambda}S + \lambda\overline{\lambda} \operatorname{Id}_{W}$$
$$= S(S - \lambda \operatorname{Id}_{W}) - \overline{\lambda}(S - \lambda \operatorname{Id}_{W})$$
$$= (S - \overline{\lambda} \operatorname{Id}_{W})(S - \lambda \operatorname{Id}_{W})$$

First assume that $w \in W(\lambda) + W(\overline{\lambda})$, then w = u + v where $u \in W(\lambda)$ and $v \in W(\overline{\lambda})$. But then u and v is killed by $(S - \overline{\lambda} \operatorname{Id}_W)$ and $(S - \lambda \operatorname{Id}_W)w$, respectively. Hence u + v = w is killed by $(S - \overline{\lambda} \operatorname{Id}_W)(S - \lambda \operatorname{Id}_W)w$.

Now assume that $w \in \operatorname{Ker}(S^2 - (\lambda - \overline{\lambda})S + \lambda\overline{\lambda}\operatorname{Id}_W) = \operatorname{Ker}((S - \overline{\lambda}\operatorname{Id}_W)(S - \lambda\operatorname{Id}_W)).$

(d)

¹Many ideas for this proof came from reading [HJE03]

Define Q(v) as a quadratic form on \mathbb{R}^n by

$$Q(x_1, \dots, x_n) = \sum_{1 \le i, j \le n} a_{ij} x_i x_j$$

for some symmetric $A = (a_{ij}) \in M_n(\mathbb{R})$. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of A with possible multiplicity.

(a) Show that $\lambda_1 = \max\{Q(v) \mid v \in \mathbb{R}^n, (v|v) = 1\}$

Because A is symmetric, we can obtain an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$ with respect to the dot product corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$. Then for any $v \in \mathbb{R}^n$ we have $v = b_1v_1 + \cdots + b_nv_n$ which implies

$$Q(v) = (Av|v)$$

= $(b_1\lambda_1v_1 + \dots + b_n\lambda_nv_n)|v)$
= $(b_1\lambda_1v_1|v) + \dots + (b_n\lambda_nv_n|v)$
= $(b_1\lambda_1v_1|b_1v_1) + \dots + (b_n\lambda_nv_n|b_nv_n)$
= $b_1^2\lambda_1 + \dots + b_n^2\lambda_n$

with the last two equalities coming to us by way of the orthonormality of β . Now assuming that (v|v) = 1, then

$$1 = (v|v) = (b_1v_1 + \dots + b_nv_n|b_1v_1 + \dots + b_nv_n) = b_1^2 + \dots + b_n^2$$

again by the orthonormality of β . Hence $\lambda_1 \ge b_1^2 \lambda_1 + \cdots + b_n^2 \lambda_n$, i.e

$$\lambda_1 = \max\{Q(v) \mid v \in \mathbb{R}^n, (v|v) = 1\}$$

(b) Extra Credit

(c) Extra Credit

4 Extra Credit

5 Extra Credit

References

[HJE03] Friedberg S. H., Insel A. J., and Spence L. E. Linear Algebra. Prentice Hall, 2003.