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1 Provide a complete proof of the Chain Rule

Let f : Rm → Rn and g : Rn → Rp be differentiable functions. Furthermore, let x0 ∈ Rn, y0 ∈ Rm, and z0 ∈ Rp

such that f(x0) = y0 and g(y0) = z0. For ease of notation, we asssume that, without loss of generality, the points
x0 ∈ Rm, y0 ∈ Rn and z0 ∈ Rp are the origins, respectively, of Rm, Rn, and Rp. We may safely assume this because
this situation can be obtained with a simple translation of the functions f and g, which leaves there differentiability,
namely the limit formula that makes them differentiable, unaffected.

Now define the linear maps L = f ′(x0) and M = g′(y0) to be the derivatives of f and g, respectively, at x0 and
y0. Thus we have

f(x)− L(x)

|x|
=

f(x0 + x)− f(x0)− L(x)

|x|
→ 0 as x→ 0

and
g(y)−M(y)

|y|
=

g(y0 + y)− g(y0)−M(y)

|y|
→ 0 as y → 0

via the combination of the differentiability of f and g and our assumption that x0, f(x0) = y0, and g(y0) = z0 are
all at the origin of their respective spaces. These two equations then yield the following sequence of equations for
sufficiently small x ∈ Rm

|gf(x)−ML(x)| = |gf(x)−
(
Mf(x)−Mf(x)

)
−ML(x)|

= |gf(x)−Mf(x) + Mf(x)−ML(x)|
≤ |g −M ||f(x)|+ |M ||f(x)− L(x)|
< ε|f(x)|+ |M |(ε|x|)

Dividing the last line by |x| then yields

|gf(x)−ML(x)|
|x|

< ε
|f(x)|
|x|

+ ε|M |

Hence if we can show that |f(x)||x| is bounded as |x| → 0, then the previous inequality implies that |gf(x)−ML(x)|
|x| can

be arbitrarily bounded as |x| → 0. Such a property on |gf(x)−ML(x)|
|x| proves our theorem since

|gf(x0 + x)− gf(x0)−ML(x)|
|x|

=
|gf(x)−ML(x)|

|x|

as we assumed x0 is the origin.

So to, finally, prove the boundedness of |f(x)|/|x| we see that

|f(x)|
|x|

=
|f(x) +

(
L(x)− L(x)

)
|

|x|
≤ |L(x)|+ |f(x)− L(x)|

|x|
=
|L(x)|
|x|

+
|f(x)− L(x)|

|x|

but |L(x)|/|x| < |L| and |f(x)−L(x)|
|x| → 0 as |x| → 0. Hence |f(x)||x| is bounded as |x| → 0 as desired.

2 Provide a complete proof of the equality mixed partials (for m = 2)

Let U be an open set in R2 and f : U → R a function whose partial derivatives of orders one and two exist and are
continuous on U . So for arbitrary h ∈ R, define the function gh : U → R by

gh(x, y) = f(x + h, y)− f(x, y)

and then define E : U → R by
E(h, k) = gh(x, y + k)− gh(x, y)

Due to the definition of gh we can apply the mean value theorem (MVT) to E twice, but in two different ways:
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1. We can apply the MVT to gh in E to get

E(h, k) = k
∂

∂y
gh(x, y + t1k)

for some 0 ≤ t1 ≤ 1. We next expand gh in the result to obtain

E(h, k) = k
∂

∂y
(f(x + h, y + t1k)− f(x, y + t1k))

and finally apply the MVT once more now to f to get

E(h, k) = hk
∂2

∂y∂x
f(x + s1h, y + t1k) (2.1)

for some 0 ≤ s1 ≤ 1.

2. Alternatively, we can first expand both gh components of E obtaining

E(h, k) =

(
f(x + h, y + k)− f(x, y + k)

)
−

(
f(x + h, y)− f(x, y)

)
and then apply the MVT first to the resulting expansion of the first component and then a second time to
the resulting expansion of the second component to get

E(h, k) =

(
f(x + h, y + k)− f(x, y + k)

)
−
(
f(x + h, y)− f(x, y)

)
= h

∂

∂x
f(x + s2h, y + k)− h

∂

∂x
f(x + s2h, y)

= h
∂

∂x
(f(x + s2h, y + k)− f(x + s2h, y))

for some 0 ≤ s2 ≤ 1. We then apply the MVT once more yielding

E(h, k) = h
∂

∂x

(
k
∂

∂y
f(x + s2h, y + t2k)

)
= hk

∂2

∂x∂y
f(x + s2h, y + t2k) (2.2)

for some 0 ≤ t2 ≤ 1.

Therefore equations 2.1 and 2.2 yield

∂2

∂y∂x
f(x + s1h, y + t1k) =

E(h, k)

hk
=

∂2

∂x∂y
f(x + s2h, y + t2k) (2.3)

Now in light of the definition of E, we see that E is also continuous in both h and k so that letting h → 0
followed by letting k → 0 will have the same value as letting k → 0 followed by letting h → 0. Thus we can let
h→ 0 and k → 0, safely in either order, in equation 2.3 to obtain

∂2

∂y∂x
f(x, y) =

∂2

∂x∂y
f(x, y)

as desired.

3 Problem 18 from Slides

Let f : R2 → R be a homogeneous function of degree n.

(a) If f is also differentiable, show f = xfx + yfy

Let f be differentiable. By defiinition, we have that f(tx, ty) = tnf(x, y) for any t. Taking the derivative of each
side of with respect to t gives us

xfx(tx, ty) + yfy(tx, ty) = ntn−1f(x, y) (3.4)

Since this is true for any t ∈ R, setting t = 1 yields xfx(x, y) + yfy(x, y) = nf(x, y), as desired.
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(b) If f is twice differentiable, show x2fxx + 2xyfxy + y2fyy = n(n − 1)f

By again taking the derivative with respect to t of both sides of 3.4 we get

x
(
xfxx(tx, ty) + yfxy(tx, ty)

)
+ y

(
xfyx(tx, ty) + yfyy(tx, ty)

)
= n(n− 1)tn−2f(x, y)

which becomes
x2fxx(tx, ty) + 2xyfxy(tx, ty) + y2fyy(tx, ty) = n(n− 1)tn−2f(x, y)

upon expanding and combining like terms. Thus by, once more, evaluating this formula at t = 1 we obtain the
desired formula.

(c) Test the above parts of the problem on f(x, y) = xy/(x + y)

By the following, we see that f is homogeneous of degree 1:

f(tx, ty) =
t2xy

t(x + y)
= t

xy

x + y
= tf(x, y)

so we need to confirm the formulas from the previous part of the problem. For xfx + yfy we get

xfx + yfy = x

(
y

x + y
− xy

(x + y)2

)
+ y

(
x

x + y
− xy

(x + y)2

)
= 2

xy

x + y
− x2y

(x + y)2
− xy2

(x + y)2

= 2
xy

x + y
− x2y + xy2

(x + y)2

= 2
xy

x + y
− xy

x + y

(x + y)2

= 2
xy

x + y
− xy

x + y

=
xy

x + y

= f

as desired.

Now we need to confirm the second formula. To start, we have

fxx = 2
xy

(x + y)3
− 2

y

(x + y)2

fxy = 2
xy

(x + y)3

fyy = 2
xy

(x + y)3
− 2

x

(x + y)2

This in turns leads to

x2fxx + 2xyfxy + y2fyy = x2

(
2

xy

(x + y)3
− 2

y

(x + y)2

)
+ 2xy

(
2

xy

(x + y)3

)
+ y2

(
2

xy

(x + y)3
− 2

x

(x + y)2

)
=

2x3y

(x + y)3
− 2x2y

(x + y)2
+

4x2y2

(x + y)3
+

2xy3

(x + y)3
− 2xy2

(x + y)2

=
2x3y

(x + y)3
− 2x3y + 2x2y2

(x + y)3
+

4x2y2

(x + y)3
+

2xy3

(x + y)3
− 2x2y2 + 2xy3

(x + y)3

=
2x3y − 2x3y − 2x2y2 + 4x2y2 + 2xy3 − 2x2y2 − 2xy3

(x + y)3

= 0

as desired, since n(n− 1)f is zero for n = 1.

Rush 3



4 Problem 19 from Slides

Define u(x, y) = x2 − y2 and v(x, y) = y2 − x2, then z is simply f(u(x, y), v(x, y)) from which we get

zx = uxfu − uxfv = 2xfu − 2xfv and zy = uyfu − uyfv = −2yfu + 2yfv

so that
yzx + xzy = (2xyfu − 2xyfv) + (−2xyfu + 2xyfv) = 2xyfu − 2xyfu − 2xyfv + 2xyfv = 0

as desired.

5

Problem: Define f : R→ R by

f(x) =

{
0 x = 0
x2 sin(1/x) otherwise

Prove that f is differentiable for all x, including x = 0, but the derivative f ′(x) is not continuous at x = 0.
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