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1 Provide a complete proof of the Chain Rule

Let f: R™ — R"™ and g : R™ — RP be differentiable functions. Furthermore, let zy € R", yo € R™, and 29 € RP
such that f(xzg) = yo and g(yo) = zo. For ease of notation, we asssume that, without loss of generality, the points
xo € R™, yo € R™ and zg € RP are the origins, respectively, of R™, R™, and RP. We may safely assume this because
this situation can be obtained with a simple translation of the functions f and g, which leaves there differentiability,
namely the limit formula that makes them differentiable, unaffected.

Now define the linear maps L = f'(x¢) and M = ¢'(yo) to be the derivatives of f and g, respectively, at z¢ and

yo. Thus we have
f(a:)—L(J:):f(x0+x)—f(xo)—[/(37)_>0 as x—0

and

9(y) — M(y) _ glyo+y) —glyo) —M@y) y—0

[yl [yl
via the combination of the differentiability of f and g and our assumption that zq, f(x¢) = yo, and g(yo) = 2 are
all at the origin of their respective spaces. These two equations then yield the following sequence of equations for
sufficiently small x € R™

l9f(x) = ML(z)] l9f(x) — (M f(x) — Mf(x)) — ML(x)]
l9f(x) — M f(z) + M f(z) — ML(z)|
lg — MI[f ()| + |M]|f(x) = L(z)|

el f(@)] + | M](elx])

A IA

Dividing the last line by |z| then yields
lgf(x) — ML(z)| __[f(z)|

<e + e| M|
|| ||
Hence if we can show that % is bounded as |z| — 0, then the previous inequality implies that W can
be arbitrarily bounded as || — 0. Such a property on lof (@)= ML()| proves our theorem since
[

9/ (xo +2) — g (20) - ML(2)| _ |gf(x) ~ ML(x)
B B

as we assumed xq is the origin.
So to, finally, prove the boundedness of | f(z)|/|z| we see that

f@I _ @)+ (L) = L@)| _ |L@)] + /(@) = L@)| _ |[L@)] | @) = L)

|| || ||

|| ||

ut x x| < and ——F— —Uas || — L. ence == 1S bounded as |r| — U as desired.
but |L L] and LE-LOL 0. Hence L)L is bounded 0 as desired

x| \

2 Provide a complete proof of the equality mixed partials (for m = 2)

Let U be an open set in R? and f : U — R a function whose partial derivatives of orders one and two exist and are
continuous on U. So for arbitrary h € R, define the function g, : U — R by

gh(x,y) = f(l’+h,y) 7f(xay)

and then define £ : U — R by
E(h, k) = gn(2,y + k) — gn(z,y)

Due to the definition of g;, we can apply the mean value theorem (MVT) to E twice, but in two different ways:
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1. We can apply the MVT to g; in E to get
0
E(h, k) =k— t1k
( ’ ) Gygh(x’y+ 1 )
for some 0 < t; < 1. We next expand gy, in the result to obtain
0
E(h, k) = ka@ (f(z+h,y +tik) — f(z,y + t:k))

and finally apply the MVT once more now to f to get

82

for some 0 < 57 < 1.

2. Alternatively, we can first expand both g; components of E obtaining

B0, = ($a+hy+0) = S +8)) = (Fe+h) - So))

and then apply the MVT first to the resulting expansion of the first component and then a second time to
the resulting expansion of the second component to get

B0 = (flo+hy+0) - fou+0) = (1@t no) - )
= hgf(:c—ks h —i—k)—hgf(x—i-s h,y)
- O 2, Y O 2, Y
0
= h% (f(z+ s2h,y+ k) — f(z + s2h,y))
for some 0 < s < 1. We then apply the MVT once more yielding
0 0 2
E(h,k) = h% (kayf(z + s2h,y + tQk)) = hkaxayf(x + soh,y + tak) (2.2)
for some 0 <ty < 1.
Therefore equations 2.1 and 2.2 yield
0?2 E(h,k 0?
flx+ s1hyy+t1k) = (h k) f(z + sah,y + ta2k) (2.3)

0yor he 0zxdy

Now in light of the definition of F, we see that F is also continuous in both h and k so that letting h — 0
followed by letting k& — 0 will have the same value as letting ¥ — 0 followed by letting h — 0. Thus we can let
h — 0 and k — 0, safely in either order, in equation 2.3 to obtain

2 82

8y3xf(x’ y) = Ox0y

f(z,y)

as desired.

3 Problem 18 from Slides

Let f: R?> — R be a homogeneous function of degree n.

(a) If f is also differentiable, show f = zf, + yf,

Let f be differentiable. By defiinition, we have that f(tz,ty) = t" f(z,y) for any ¢t. Taking the derivative of each
side of with respect to ¢ gives us

afo(te, ty) + yfy(te,ty) = nt" " f(z,y) (3.4)
Since this is true for any t € R, setting t = 1 yields zfz(z,y) + yfy(z,y) = nf(z,y), as desired.
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(b) If f is twice differentiable, show @2 f,, + 22y fry + y*fyy = n(n — 1) f

By again taking the derivative with respect to ¢ of both sides of 3.4 we get

x(xfa:x(tx7 ty) + yfwy(txa ty)) + y(xfyz(txa ty) + yfyy(txa ty)) =n(n— 1)tn_2f(x7 Y)

which becomes

fow:(m:a ty) + 22y fu, (tz, ty) + ?ﬁfyy(txa ty) =n(n — l)tn72f(.r, Y)
upon expanding and combining like terms. Thus by, once more, evaluating this formula at ¢ = 1 we obtain the
desired formula.

(c) Test the above parts of the problem on f(z,y) = xy/(x + y)

By the following, we see that f is homogeneous of degree 1:

. tzxy L,y

so we need to confirm the formulas from the previous part of the problem. For xf, 4+ yf, we get

x(fciyky - (xiny) +y<fﬂiy - (xiny)

L R
z+y (z+y)? (z+y)?
o Ty Ty +ay’
vty (v+y)?

T fo +yfy

Yy r+vy
= 2 -y 3
z+y (x+y)
- 9 LY LY
n r+y T+Y
I
x4y

= f
as desired.

Now we need to confirm the second formula. To start, we have

zy y
T 2 -2
/ @roP  C@to?
Ty
T, 27
T (z+y)?

(z+y)? (z+y)?

This in turns leads to

2 2 2 xy Y zy 2 ry x
T fre + 22 + = z°(2 -2 + 22y 2———— | + 2 -2
fax Yfay + Y fyy < (x+y)3 (:E+y)2) y< (x+y)3) Y < (z +y)° (m+y)2)

B 2z3y 2%y 42%y? 2xy> 2xy>

T Gy @ry?  @ryP @ryP @R

22y B 223y + 21292 4x%y? N 213 B 2x29% 4 229
(x +y)? (z +y)? (+y)?  (z+y)? (z +y)?

_ 223y — 223y — 222y% + 42%y? + 2293 — 222y — 2zy°

- (z+y)*

= 0

as desired, since n(n — 1) f is zero for n = 1.
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4 Problem 19 from Slides

Define u(x,y) = 22 — y? and v(x,y) = y?> — 22, then z is simply f(u(z,y),v(z,y)) from which we get

ZmzumfufuszZmeu72va and Zy:uyfufuyfv:72yfu+2yfv

so that
Y2y + T2y = (Znyu - Qnyv) + (72zyfu + szfv) = Znyu - 2zyfu - 2517ny + 217ny =0

as desired.

5

Problem: Define f: R — R by
0 z=0
)= {

2?sin(1/x) otherwise

Prove that f is differentiable for all z, including = 0, but the derivative f’(z) is not continuous at x = 0.
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