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To aide in our proofs, let’s create an equivalent definition of Riemann Integrable.

Definition 1. A function f: A — R for A C R™ is Riemann Integrable if for all real £ > 0 there exists a partition
P of A such that
U(faP) _L(f?P) <e

Note this is simply Theorem 3-3 of Spivak.

1 Problem 3 from Slides

Problem:
Prove that a continuous function f: A — R where A C R™ and A = [a1,b1] X - -+ X [ap, by] is Riemann Integrable.

Solution:
We will make use of Definition 1 for an easier proof. So let € > 0. Define 1 > 0 so that

WH(bi_ai) <e (1.1)

Because A is compact and f continuous on A, then f is uniformly continuous on A. Hence there is a § > 0 such
that |z — y| < ¢ implies
|f(x) = fy)l <n (1.2)
for all z,y € A. Now define a partition P = (Py,..., P,) of A by P; = {a;, a; + k;, a; + 2k;} where k; = b% and
s

m is an integer chosen so that b; — a; < m—= for all i. Defining P in this way means that any two points z,y

contained in the same rectangle S € P will have

I CORSCHRACORS

Hence, by equation 1.2 we have

Ms(f) —ms(f) <n (1.3)
due to f attaining its maximum and minimum value on the compact set S. Finally, through the use of equations
1.1 and 1.3 we obtain

U(f,P) = L(f,P) =Y Ms(f)v(S) = > ms(f)v(S)

Sep Sep
= Z (Ms(f) - mS(f)) V(S)
SepP
<n > v(S)
SepP
= nH(bz - ai)
<e

as desired.

2 Problem 4 from Slides

Problem:
Let A C R™ and denote it by A = [a1,b1] X -+ X [an, b,]. Show that if f : A — R has only finitely many points of
discontinuity, then it is Riemann integrable.

Solution:
Let € > 0. We will show the existence of a partition P of A such that U(f, P) — L(f, P) < e. To ease notation and
therefore our proof, we define M = |f(z)| and define n > 0 so that

nv(A) <e/2 (2.4)
both of which we will use shortly.
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Secluding Discontinuities. Let E = {z1,...,2} be the points of discontinuity of f denoting each xz; by
x; = (Ti1, %2, - -+, Tin). Then define k closed squares A = {A1,..., A} by setting the length of the sides of each
square to £ where ¢ is chosen so that

1 .
t<— rg{ljn{lwz — ]}
and
IMEL" < /2 (2.5)

and then putting each A; = [z — %, T+ %} X oo X @ — g, Tin + %] By defining A; this way, the first restriction
on ¢ above ensures A, ..., A, are mutually exclusive. The second restriction above simply allows an important
bound we’ll see shortly.

Partitioning A. Since E is covered by A and each point of F in the interior of an element of A, then K = A—U; A?,
where AY is the interior of A4;, is compact and has no intersection with £. Since f is continuous on A, it is continuous
on K, and thus uniformly continuous on compact K. Hence we can find a § > 0 such that

|f(s) = f(O) <n (2.6)

whenever |s — t| < § for any s,t € K. Now define a partition P = (Py,...,P,) of A by

14 l l L
Pl-{ai,aiJrn-,ai+2ri,...,ai+(z1)ri,bi}u{xh—:|:2,...,xmi:t2}U(xji2,xji+2>
J

bi—ai

and z is an integer chosen so that @ < § for all 4. Defining P; in this manner ensures that no
point of (scji — g,xji + g), for any j, is contained in P; and that all points outside of those intervals are at most
within a distance of § of each other. This restriction on the distance yields

Ms(f) —ms(f) <n (2.7)

where r; =

for any S € P — A due to equation 2.6.

Conclusion. Given our definition of P and because |Mg(f) —mg(f)| < 2M for any S € P, we have the following
sequence of equations allotted to us by equations 2.4, 2.5, and 2.7

U(f,P) = L(f,P) = Y _ |Ms(f) — ms(f)| v(S5)

SeP
= > IMs(f) =ms(HIv(S) + Y IMs(f) —ms(£)|v(S)
SeP-A SeA
< >0 v + Y IMs(f) —ms(f)|v(S)
SeP-A SeA
< Z nv(S)+2M Z v(S)
SeP—A SeA
< Z nv(S) +2M Z o
SeP—A SeA
=n > v(S)+2Mk"
SeP—A
<nv(A)+2Mke"
<e/24¢€/2
=c

yielding our desired bound.

Rush 2



3 Problem 5 from Slides

Let f: A= Rand g: A — R where A C R" and A = [a1,b1] X -+ X [an, by] both be Riemann Integrable.

(a) Show that f + g is Riemann Integrable

We first note that because for any bounded set S, Mg and mg are just functions whose outputs are supremums
and infimums, respectively, then we have that

Ms(f) + Ms(g) > Ms(f +g) (3.8)
and
ms(f) +ms(g) <ms(f+9) (3.9)
implying that
(Ms(f) + Ms(g)) — (ms(f) +ms(g)) = Ms(f +g) —ms(f +9g) (3.10)

This we state for later use.

So now let € > 0. Since f and g are Riemann Integrable we can then find partitions P; and P, of A such that
U(f,P1)—L(f,P1) <e/2and U(g, P,)—L(g, P2) < £/2. Putting P = P;UP;, refines both P; and P, simultaneously,
thus yielding U(f, P) — L(f,P) < /2 and U(g, P) — L(g, P) < €/2. Adding these inequalities gives us

(U(f,P) = L(f,P))+ (Ul(g, P) — L(g,P)) < e
so that through application of equation 3.10 we get
e> (U(f,P) = L(f. P)) + (U(g, P) — L(g, P))
= 3 (Ms(f) = ms(D)V(S) + 3 (Ms(g) = ms(9)) v(S)

SepP SepP

= > ((Ms(f) + Ms(g)) — (ms(f) +ms(9))) v(S)
SepP

> (Ms(f+g) —ms(f +9)v(S)
SepP

which implies that f + ¢ is Riemann Integrable.

(b) Show that [, (f+g9)= [, f+ [,9

For any function h : A — R, partition P of A, and S € P we have mg(h) < Mg(h). Thus equations 3.8 and 3.9
tell us that

ms(f) +ms(g) <ms(f+g) < Ms(f +9) < Ms(f) +ms(g)
for f and g. Hence for any partition P of A,
S (ms(f) + ms(9) v($) < 3 ms(f +9)v(S) < 3 Ms(f +9)v(S) < 3 (Ms(f) + Ms(9)) v(S)
Sep sep sep sep

which implies
L(f,P)+ L(g, P) < L(f + 9, P) <U(f + g, P) <U(f, P) + Ul(g, P)

Since f and g are Riemann Integrable, then L(f, P) + L(g, P) and U(f, P) + U(g, P) can be brought arbitrarily
close to each other. Thus the above inequality implies that all of L(f + g, P), L(f, P)+ L(g, P), U(f,P)+U(g, P),
and U(f + g, P) can be made arbitrarily close to each other by choosing an appropriate partition. Hence

/A(f+g):/Af+/Ag

Rush 3



(c) For constant ¢, show that cf is Riemann Integrable

Let € > 0. Since f is Riemann Integrable, we can find a partition P of A such that
U(f.P) ~ L(f.P) <~
Since U(cf, P) = cU(f, P) and L(cf, P) = cL(f, P), then
U(cf.P) — Licf,P) = c(U(f.P) = L(f.P)) < ¢(Z) =<
so that cf is Riemann Integrable.

(d) For constant ¢, show that [, cf =c [, f

Since U(cf, P) = cU(f, P), then the Riemann Integrability of f and cf implies
/ cf =intfU(cf, P) =inf (cU(f,P)) =cinfU(f,P) = c/ f
A P P P A

as desired.

4 Problem 6 from Slides

Problem:
Show that we can use open rectangles instead of closed rectangles in the definition of “measure zero” and the sets
that have measure zero will remain unchanged

Solution:
There is nothing really to prove to show that the open rectangle definition implies the closed rectangle definition
since a countable set of open rectangles is a subset of set of those rectangles’ closures, but have the same volume.

To prove that the closed rectangle definition implies the open rectangle definition, let A C R™ be a set of measure
zero using the closed rectangle definition. Let € > 0. Then we can find a countable collection of closed sets {V;}
that covers A such that

Z v(V;) <

i

N ™

and denote each V; by [a;1,bi1] X -+ X [ain, bin]. Choose r > 0 so that (14 7)™ < 2 and define a countable collection
of open sets {U;} by

r r r r
Ui = (ailfi,bi1+§) X X (ain*?beri)

for each 4. Then with this definition we have V; C U; indicating that {U;} is a cover of A by open rectangles. But
furthermore, the volume of each open rectangle is

v(U;) = H ((bz‘j + g) - (%‘ - g)) = H ((bij —aij) (L+7)=0+71)" H (bij — aij) <2v(V;)

implying that the volume of the entire collection is

Dov(Ui) < Y 2v(Vi) =23 v(Vi) <2 (g) =

3

which reveals that A has measure zero according to the open rectangle definition, as well.
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5 Problem 8 from Slides

Problem:
Show that if a < b, then the closed interval [a,b] C R does not have content zero.

Solution:

Since [a,b] is a closed rectangle of volume b — a, then any covering of it by closed rectangles must have a total
volume of at least b — a. Hence by setting e = b — a there will never be a cover (finite or countably infinite) of [a, b]
by closed rectangles with total volume less than this e. Hence [a, b] must not be a set of content zero.

6 Problem 9 from Slides

Problem:
Show that a compact set A C R™ has measure zero if and only if it has content zero.

Solution:

Let A be a compact set with measure zero. Let € > 0, then in light of problem 4 there is an uncountable collection
of open rectangles = {U;} with v(%) < . However, since A is compact there is a finite subcollection of %, say
Un,,Un,,...,Up,, which covers A. Furthermore, this subcollection has the property

V(Uny) +V (Uny) + - v (Uny) V(%) <€

which implies that A has content zero.

The converse is trivial as content zero implies measure zero.

7 Problem 10 from Slides

Problem:
Show that the set A of rational numbers between 0 and 1 does not have content zero.

Solution:
Let ¥ = {V;} be a finite collection of n closed rectangles with total volume less than 1/2. Denote each V; by [a;, bi]
and define j = argmin,{a;}. Note we know j exists due to the finite cardinality of ¥. We then have two possible
scenarios.

1. a; > 0: If this is the case, then (0, a;) would be uncovered by #". Since A is dense in [0, 1] then there would
be a point of A contained in (0, a;) and hence not be covered by 7.

2. a; < 0: If this is the case, we may repeat our process developed here to determine if AN (b;,1) is covered
by ¥ — V;. Given that ¥ is finite, we will have two eventualities; either we will come across the previous
case, or we will hit this current case for at most n times, ending when 7 is empty. If the former, we know
¥ does not cover A, but if the latter, then ¥ will cover [0, z] and not (x, c0) for some = > 0. However, given
that v(¥) < 1/2, then z < 1/2, i.e. ¥ does not cover (1/2,1). Since A is dense in [0,1], then AN (1/2,1) is
nonempty and, furthermore, not covered by 7.

Because all cases result in some subset of A remaining uncovered by 7 then there must be no finite set of closed
rectangles that cover A and have volume less than 1/2. Hence A does not have content zero.
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8 Problem 11 from Slides

Problem:
Let f : [a,b] — R be an increasing function. Show that the set of all points x € [a,b] where f is discontinuous has
measure zero.

]i?lhfl{ﬁ((i)irrll.’s Theorem 4.30, the set of points E in [a, b] where f is discontinuous is countable. So denote the points
of E by x1,x2,3,.... Thus for any € > 0 we can cover E with closed rectangles Ay, Ay, As,... by
A, = [ml 52i1+1 , T + 62111}
so that - -
SV =Y e =Y o = 5 <
i i=1 i=1
as desired.

9 Problem 12 from Slides

Problem:
Show that the bounded function f: A — R is continuous at a € A if and only if

O(f,a)Zlil)I(l)(M(a,f,T)—m(a,f,T)):O

Solution:
First assume that f is continuous. Let £ > 0. Then we can find a § > 0 such that |z—a| < § implies |f(z) — f(a)| <
for all x € A. Hence if r < ¢ then

|M(a, f,r) = m(a, f,r)] < |M(a, f,r) = f(a)] + | f(a) = m(a, f,r)| < g + % =e

£
2

In other words lim, o (M (a, f,r) —m(a, f,r)) =0
(

Conversely, assume that lim,_,o (M (a, f,7) —m(a, f,7)) = 0. Let € > 0. Then we can find 6 > 0 such that r < ¢
implies that |M(a, f,r) — m(a, f,r)| < e. Hence for any z € A with |z — a| < § we have

|f(x) = fa)| < |M(a, f, |z —al) —mla, f,|z —al])| <&

so that f is continuous.
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10 Problem 13 from Slides

Problem:
Let A C R"™ be a closed set and f : A — R a bounded function. Show that the set {x € A|o(z, f) > £} is closed for
any € > 0.

Solution:

Let € > 0 and put B = {z € A|o(z, f) > e}. We show B is closed by showing it’s complement is open. Let
b € B¢, in which case either b ¢ A or both b € A and o(f,b) < e. If the former then since A is closed there’s a
neighborhood of b contained in A¢ which is contained in B¢ implying B is closed in this case. So assume the latter.
Then lim,_o (M (b, f,r) — m(b, f,r)) = £ for some ¢ with 0 < ¢ < ¢. Hence there exists a § > 0 such that r < §
implies M (b, f,r) —m(b, f,r) — L <e— ¥, ie.

M(b7 fa T) - m(b’ fv T) <e (10.11)

whenever 7 < 0. Let y € Bj/s(b) where Bj/5(b) is the open ball around b of radius 6/2. Then we have Bj/4(y) C
By /2(b) which together with equation 10.11 implies

M(y,fm)—m(y,f,r) é‘]\4'(b7f76/2)_777J(bv.]t76/2) <e

whenever r < 6/4. In other words,
lim (M(y,f,?") 7m(y7far)) <e

r—0

Hence y € B¢. Since y € Bj/o(b) was arbitrary, then Bj/o(b) C B¢, implying that B¢ is open and it’s complement
B is closed, as desired.

11 Problem 14 from Slides

Problem:
Let A C R™ be a closed rectangle and f : A — R a bounded function such that for all x € A, o(f,z) < ¢ for a fixed
€ > 0. Show that there is a partition P of A such that U(f, P) — L(f, P) < e v(A).

Solution:
Since o(f,z) < € for all z € A, then putting

Ex:}ii%(M(I,f,T)—m(l‘,f,T))

for each x € Ayields 4, < ¢,i.e. e—{, > 0 for each x € A. The above equation then implies that for each x € A there
is a §, > 0 such that M (z, f,r) —m(x, f,r) —{, < e—{, whenever r < §,, in other words M (x, f,r) —m(z, f,r) < e
whenever r < d,. Thus by setting § = inf,{d, } we have

Mz, f,r) —m(z, f,r) <e (11.12)

for all x € A whenever r < §. For later ease of notation, put n = /2, noting that therefore n < 6 and so equation
11.12 applies for r = n.
Now denote A by [a1,b1] X + -+ X [an, by] and define a partition P = (Py,..., P,) of A by setting

Py ={ai,a; + ki, a; + 2ki, ... a; + (n— D)k, b}

where we define k; = %, and m is chosen so that b; —a; < m (7/v2) for all i. Defining P in this way ensures that

each rectangle S € P has sides of length less than % This implies that for each such rectangle there’s an zg € A
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with S C B,(xs) where B, (zg) is the open ball of radius 7 centered at 5. Hence equation 11.12 implies

U(f,P)— L(f,P) =Y (Ms(f) — ms(f))v(S)

Sep
< (M(xSmfan)_m(xsafan))v(s)

as desired.

12 Problem 20 from Slides

Define f : R — R by

and define g : R — R by

for some real numbers a < b.

(a) Prove that f is of class C*°

We will prove that all orders of derivatives of f have the form p(x)f(z) where p(z) is a polynomial. Doing this
shows that f is of class C*° since tth product of a polynomial and f is both differentiable and continuous. We first
see that as a base case f(x) = e~ " is already of the form p(z)f(z) for p(z) = 1. So now let

F (@) = pla) f () (12.13)

for some polynomial p(x). Since f'(z) = 2273 f(x), then
FU (@) = (@) f(2) + pla) f' (@) = D (@) f(2) + 22 p(a) f (&) = (¢ (2) + 22 p(x)) f(2)

so that f("*1(x) is the product of f and a polynomial. The inductive hypothesis thus tells us that 12.13 holds for
all positive n, as desired.
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(b) Prove that g is of class C*° and positive on (a, b) but zero elsewhere

We will prove that all orders of derivatives of g have the form p(x)g(x) where p(x) is a polynomial. Doing this
shows that g is of class C'* since the product of a polynomial and g(x) is both differentiable and continuous. As a
base case we have that g(z) is already of the form p(z)g(x) for p(x) = 1. So now let

9" (z) = p(x)g(x) (12.14)
for some polynomial p(z). Since ¢'(x) = (2(z — a)~3 — 2(b — x)~?)g(x), then
9" (@) = (@)g(2) + plx)g (@)
= p/(2)g(z) + p(x)(2(z — a) 7 = 2(b — 2)*)g(x)
= (¢'(2) + 22 — a)7* = 2(b — 2))p(2)) g(2)

so that g("*1)(z) is the product of g and a polynomial. The inductive hypothesis thus tells us that 12.14 holds for
all positive n, as desired.

Furthermore, for any z¢ < a we have £g —a < 0 so that f(xg—a) = 0 which in turn means g(xo) = 0. Likewise,
when xg > b then b — 2y < 0 so that f(b— xo) = 0 implying g(xg) = 0. Finally, whenever zy € (a,b) we have both
0<b—axoand 0 < 2o — a implying that g(zo) = f(zo — a)f(b — xo) = e~ @=D*=0=20"" 5 0 50 that g(z) is
positive in this case.

(c)

Put

and then define h: R — R by

Show h is of class C*°
Since g € C*°, then the fact that

implies that A is of class C*°.

Show h(z) =0 for x < a

According to the previous part of this problem, g(z) = 0 for « < a, so that for some ¢ € R

1 [ 1 = 1

whenever = < a.
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Show 0 < h(z) <lfora<xz <b

According to the previous part of this problem, g(z) > 0 for all € (a,b) and zero elsewhere. Hence

/z g(z)dz >0 (12.15)
and -
/ g(z)dz >0 (12.16)

Inequality 12.15 allows us to add the value on its left to both sides of inequality 12.16. Doing so yields our desired

upper bound.
/ g(x)dx+/ g(x)dx>/ g(x)dx

/_Z g(x)dz > /_9; g(x)dx

M > /ff g(x)dx

— 00

1 T
1> M‘/_Oog(x)dx

1> h(z)

Furthermore, adding together 12.15 and 12.16 yields

/_; g(x)dx + /:O g(z)dr = /_O:O g(x)dz > 0

so that M > 0. Combining this with inequality 12.15 gives us the lower bound we desire.

() >0

Show h(z) =1 for x > b

Since g(x) = 0 whenever x > b, then for > b we have

/_9; g(x)dx = /_O; g(x)dx

Sl g@)da )
oo 9(x)dx
% [m g(w)da =
1
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(d)

Let a,b € R be such that a < b. Define a function k : R — R by
k(x) =1 = h(|x])
Then given the properties of i we proved above, we obtain the following properties of k:
e When |x| < a h(|x]) =0 so that k(x) =1-0=1
e When a < |x]b 0 < h(]x]) < 1 so that
0>—h(x)>-1
1>1—h(x)>0
1>k(x) >0
e When |x| > b h(|x|) = 1 so that k(x) =1—-1=0
Furthermore, since the partial derivative of k with respect to x; is

0 T .y
= ()

dx; x|

then the fact that h is of class C*° implies that k is also of the class C°°, as desired.
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