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1 Fully prove steps 1 through 4 of the Change of Variables Theorem

Change of Variables Theorem: Let A C R™ be an open set and g : A — R™ a one-to-one, continuously
differentiable map such that det ¢’(x) # 0 for all z € A. If f: g(A) — R is a Riemann integrable function, then

/g(A)f=/A(fog)ldetg’|

Proof: The proof begins with several reductions which allow us to assume that f = 1, that A is a small open set
about a point a, and that ¢’(a) is the identity matrix. Then the argument is completed by induction on n with the
use of Fubini’s Theorem.

(a) Step 1

Suppose there is an open cover V of A such that for each U € V and any integrable f, we have

/g(U)f = /U(fog)ldetg’l

Then the theorem is true for all A.

Proof.

The collection of all g(U) is an open cover of g(A). Let ® be a partition of unity subordinate to this cover. For any
Riemann integrable f : g(A) — R, if ¢ = 0 outside of g(U), then, since g is one-to-one we have that (¢f)og =10
outside of U. Hence ¢f is integrable and the equation

/g(U) sof=/U<<sof>og>|detg'|

/g L= /A ((0f) 0 9) det /|

can be written as

Summing over all ¢ € ¢ yields

- o detd!
g;b/gm)@f %A“‘Pf) g)l det g’
- o dt /
/Q(A) ;w f /A g;p((sﬁf) ) | 1det ¢/
- ) o
/9(A>f /A g;b‘” flog] |ldetd|
/g(A)f:/A(ng)Idetm
as desired.
(b) Step 2

It suffices to prove the theorem for f = 1.

Proof.
If the theorem holds for f = 1 then it holds for f = constant. Let V be a rectangle in g(A) and P a partition of V.
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For each subrectangle S of P, let fs be the constant function mg(f). Then

L(f,P) =Y ms(f)v(S)

SepP

s

Sep intS

S [ (sogldety
Sep Y 9—1(intS)

< fog)|detg
Z /gl(intS)( ) |

B SepP
:/ (f o g)|detg/|
g—1(V)

Since [, f = LUBp(f, P), this proves that

/Vf</g_1(v)(fog)|detg’|

Likewise, letting fs = Mg(f), we get the opposite inequality, and so that conclude that

/Vf - /gl(v)(fog)ldetg’l

fZ/A(fog)ldetgl

Then as in Step 1, it follows that
g(A)

(c) Step 3

If the theorem is true for g : A — R™ and for h: B — R™ where g(A) C B, then it is also true for hog: A — R™.

Proof.
To ease the proof slightly, define X = g(A) and f’ = (f o h)| det ’|. Then we have

/hog(A) I= /h(g(A)) d
N /h(X) d

:/(foh)|deth'|

(f o g)ldetg|

:/ (((f o h)|det H']) o g) | det |
= [ omeg (dei|og)]dety|
= [ (Fomoa)aei|og)]dety|
:/A(fo(hog))\det(hog)’l

as desired.
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(d) Step 4

The theorem is true if g is a linear tranformation.

Proof.
By steps 1 and 2, it suffices to show for any open rectangle U that

/ 1:/ | det ¢'|
g(U) U

Note that for a linear transformation g, we have ¢’ = g. Then this is just the fact from linear algebra that a linear
tranformation g : R™ — R™ multiplies volumes by | det g|.

2 Fully prove the Fundamental Theorem

Let A be a closed rectangle in R™ and f: A — R a bounded function. Let
B ={x e A: fis not continuous at x}

Then f is Riemann integrable on A if and only if B has measure zero.

Proof.
Suppose first that B has measure zero.

Let € > 0. Define B, = {z € A: o(f,z) > e}. Now B, C B, hence B, has measure zero. By problem 13 of our
previous Chapter 2, the set B. is closed. Since B is also bounded, it is compact, and so has content zero. Hence
there is a finite collection Uy, ..., U, of closed rectangles, whose interiors cover B., with total volume less than ¢.

Now let P be a partition of the original rectangle A which “refines” the collection of rectangles U; in the following
sense. Each rectangle S € P is in one of the following two groups:

1. Group 1 (G1): S C U; for some i
2. Group 2 (G2): otherwise; i.e. S is disjoint from B,
Since the function f is, by hypothesis, bounded on A, choose M so that |f(z)| < M for all x € A. Then

Ms(f) —ms(f) <2M

for all S € P. Thus since
U(f,P) = L(f,P) = Y _ [Ms(f) — ms(f)]vol(S)

SepP

we can divide the above difference into two parts, the first corresponding to GG; and the other to G5. We have the
following for the first part

> [Ms(f) = ms(f)]vol(S <2MZV01 ) < 2Me (2.1)

SeGy

As for the second part, since each point © € S € G5 has o(f,x) < g, then any S € G5 can be further partitioned
into rectangles S’ so that

Z [Ms/(f) —ms/ (f)] vol(S Z evol(S') < e Z vol(S’) < evol(S)

S'cS S'cS S'cS

Thus replacing the partitions in G5 with these refined partitions implies the following bound

Z [MS(f) —mis(f)] vol(S Z evol(S Z vol(S) < evol(A) (2.2)

S'eGo SeGa SeGo

Putting together the partial sums from G and G2 of equations 2.1 and 2.2 yields

U(f,P) = L(f,P) =Y _ [Ms(f) — ms(f)]vol(S) < 2Me + & vol(A)

Sepr
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The value on the right-hand side can be made arbitrarily small by appropriate choice of € and so we conclude that
f is Riemann integrable.

Conversely, suppose that f is Riemann integrable. We must show that the set B has measure zero. Since B =
By UByUBy3U---, it is enough to show that each By, has measure zero.

Since B, is compact, that is the same as having content zero. Since f is Riemann integrable, then given any
€ > 0 we can find a partition P of A such that

U(f.P)~ L(J,P) < -

Let G be the subfamily of P consisting of rectangles which meet B;/,. Then the rectangles S in G cover By .
Expand slightly each of these rectangles S to a rectangles S, so that the interiors of the S’ now cover By ,,. Then
each of the rectangles S’ contains in its interior a point 2 € By, where the oscillation o(f,z) > 1/n. It follows
from this that

Mg/(f) =ms: (f) = 1/n

Hence

(1/n) > vol(S) < D [Ms/(f) — ms ()] vol(S") < Y [Mg/(f) — mg (f)]vol(S') < g/n

S'eG’ S'eG’ S'epP’

and therefore ) ¢ . vol(S”) < e. Since the rectangles S’ in G’ cover By, and since € > 0 is arbitrarily small,
this shows the By, has content zero, completing the proof.
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