For the first five problems, let A,B,C,D ∈ R3 with A = (a1,a2,a3), B = (b1,b2,b3), C = (c1,c2,c3), and D = (d1,d2,d3).
| B × C | = (b2c3 - b3c2, b1c3 - b3c1, b1c2 - b2c1) | ||
| C × A | = (c2a3 - c3a2, c1a3 - c3a1, c1a2 - c2a1) | ||
| A × B | = (a2b3 - a3b2, a1b3 - a3b1, a1b2 - a2b1) |
| A ⋅ (B × C) | = a1(b2c3 - b3c2) + a2(b1c3 - b3c1) + a3(b1c2 - b2c1) | ||
| B ⋅ (C × A) | = b1(c2a3 - c3a2) + b2(c1a3 - c3a1) + b3(c1a2 - c2a1) | ||
| = a1(b2c3 - b3c2) + a2(b1c3 - b3c1) + a3(b1c2 - b2c1) | |||
| C ⋅ (A × B) | = c1(a2b3 - a3b2) + c2(a1b3 - a3b1) + c3(a1b2 - a2b1) | ||
| = a1(b2c3 - b3c2) + a2(b1c3 - b3c1) + a3(b1c2 - b2c1) |
| A × (B × C) | = a2(b1c2 - b2c1) - a3(b1c3 - b3c1), | ||
| a1(b1c2 - b2c1) - a3(b2c3 - b3c2), | |||
a1(b1c3 - b3c1) - a2(b2c3 - b3c2)![]() |

and

so that
| B(A ⋅ C) - C(A ⋅ B) | = (a1c1 + a2c2 + a3c3)b1 - (a1b1 + a2b2 + a3b3)c1, | ||
| (a1c1 + a2c2 + a3c3)b2 - (a1b1 + a2b2 + a3b3)c2, | |||
(a1c1 + a2c2 + a3c3)b3 - (a1b1 + a2b2 + a3b3)c3![]() | |||
= a1b1c1 + a2b1c2 + a3b1c3 - a1b1c1 - a2b2c1 - a3b3c1, | |||
| a1b2c1 + a2b2c2 + a3b2c3 - a1b1c2 - a2b2c2 - a3b3c2, | |||
a1b3c1 + a2b3c2 + a3b3c3 - a1b1c3 - a2b2c3 - a3b3c3![]() | |||
= a2b1c2 + a3b1c3 - a2b2c1 - a3b3c1, | |||
| a1b2c1 + a3b2c3 - a1b1c2 - a3b3c2, | |||
a1b3c1 + a2b3c2 - a1b1c3 - a2b2c3![]() | |||
= a2(b1c2 - b2c1) - a3(b1c3 - b3c1), | |||
| a1(b1c2 - b2c1) - a3(b2c3 - b3c2), | |||
a1(b1c3 - b3c1) - a2(b2c3 - b3c2)![]() |
| A × (B × C) + B × (C × A) + C × (A × B) | = B(A ⋅ C) - C(A ⋅ B) + C(B ⋅ A) - A(B ⋅ C) + A(C ⋅ B) - B(C ⋅ A)![]() | ||
= B(A ⋅ C) - B(C ⋅ A) + C(B ⋅ A) - C(A ⋅ B) + A(C ⋅ B) - A(B ⋅ C)![]() | |||
| = 0 |
| A × (B × C) | = a2(b1c2 - b2c1) - a3(b1c3 - b3c1), | ||
| a1(b1c2 - b2c1) - a3(b2c3 - b3c2), | |||
a1(b1c3 - b3c1) - a2(b2c3 - b3c2)![]() | |||
= a2b1c2 - a2b2c1 - a3b1c3 + a3b3c1, | |||
| a1b1c2 - a1b2c1 - a3b2c3 + a3b3c2, | |||
a1b1c3 - a1b3c1 - a2b2c3 + a2b3c2![]() |
| (A × B) × C | = (a2b3 - a3b2, a1b3 - a3b1, a1b2 - a2b1) × C | ||
= c2(a1b2 - a2b1) - c3(a1b3 - a3b1), | |||
| c1(a1b2 - a2b1) - c3(a2b3 - a3b2), | |||
c1(a1b3 - a3b1) - c2(a2b3 - a3b2)![]() | |||
= a1b2c2 - a2b1c2 - a1b3c3 + a3b1c3, | |||
| a1b2c1 - a2b1c1 - a2b3c3 + a3b2c3, | |||
a1b3c1 - a3b1c1 - a2b3c2 + a3b2c2![]() |
| a2b1c2 - a2b2c1 - a3b1c3 + a3b3c1 | = a1b2c2 - a2b1c2 - a1b3c3 + a3b1c3 | ||
| a1b1c2 - a1b2c1 - a3b2c3 + a3b3c2 | = a1b2c1 - a2b1c1 - a2b3c3 + a3b2c3, | ||
| a1b1c3 - a1b3c1 - a2b2c3 + a2b3c2 | = a1b3c1 - a3b1c1 - a2b3c2 + a3b2c2 |
= r∕r.

so that

∕r2▿![]() | = ▿(r-1) | ||
= ![]() | |||
= -r-2![]() | |||
= -r-2![]() | |||
= -r-2 (2x,2y,2z) | |||
= -r-2 (x,y,z) | |||
= -r-2 r | |||
= -r-2![]() | |||
= -![]() |

Then for any φt in the group of one-parameter diffeomorphisms generated by this vector field must have

By defining φt(x,y,z) = (x*(t,x,y,z),y*(t,x,y,z),z*(t,x,y,z)), the above equation yields
(x*(t,x,y,z),y*(t,x,y,z),z*(t,x,y,z)) | = V ((x*(t,x,y,z),y*(t,x,y,z),z*(t,x,y,z))) | ||
| = (-y*(t,x,y,z),x*(t,x,y,z),1) |
x* | = -y* | ||
y* | = x* | ||
z* | = 1 |

where ft is an arbitrary function on R3 but fixed for each t.
Furthermore,

which has determinant zero. Hence
|t=0 detJφt is zero, and thus ▿⋅ V is also zero, indicating the {φt} are volume
preserving.

in other words

Therefore
| curlV | = ![]() | ||
= ![]() | |||
| = (0,0,0) |