For the first five problems, let A,B,C,D ∈ R3 with A = (a1,a2,a3), B = (b1,b2,b3), C = (c1,c2,c3), and D = (d1,d2,d3).
B × C | = (b2c3 - b3c2, b1c3 - b3c1, b1c2 - b2c1) | ||
C × A | = (c2a3 - c3a2, c1a3 - c3a1, c1a2 - c2a1) | ||
A × B | = (a2b3 - a3b2, a1b3 - a3b1, a1b2 - a2b1) |
A ⋅ (B × C) | = a1(b2c3 - b3c2) + a2(b1c3 - b3c1) + a3(b1c2 - b2c1) | ||
B ⋅ (C × A) | = b1(c2a3 - c3a2) + b2(c1a3 - c3a1) + b3(c1a2 - c2a1) | ||
= a1(b2c3 - b3c2) + a2(b1c3 - b3c1) + a3(b1c2 - b2c1) | |||
C ⋅ (A × B) | = c1(a2b3 - a3b2) + c2(a1b3 - a3b1) + c3(a1b2 - a2b1) | ||
= a1(b2c3 - b3c2) + a2(b1c3 - b3c1) + a3(b1c2 - b2c1) |
A × (B × C) | = a2(b1c2 - b2c1) - a3(b1c3 - b3c1), | ||
a1(b1c2 - b2c1) - a3(b2c3 - b3c2), | |||
a1(b1c3 - b3c1) - a2(b2c3 - b3c2) |
and
so that
B(A ⋅ C) - C(A ⋅ B) | = (a1c1 + a2c2 + a3c3)b1 - (a1b1 + a2b2 + a3b3)c1, | ||
(a1c1 + a2c2 + a3c3)b2 - (a1b1 + a2b2 + a3b3)c2, | |||
(a1c1 + a2c2 + a3c3)b3 - (a1b1 + a2b2 + a3b3)c3 | |||
= a1b1c1 + a2b1c2 + a3b1c3 - a1b1c1 - a2b2c1 - a3b3c1, | |||
a1b2c1 + a2b2c2 + a3b2c3 - a1b1c2 - a2b2c2 - a3b3c2, | |||
a1b3c1 + a2b3c2 + a3b3c3 - a1b1c3 - a2b2c3 - a3b3c3 | |||
= a2b1c2 + a3b1c3 - a2b2c1 - a3b3c1, | |||
a1b2c1 + a3b2c3 - a1b1c2 - a3b3c2, | |||
a1b3c1 + a2b3c2 - a1b1c3 - a2b2c3 | |||
= a2(b1c2 - b2c1) - a3(b1c3 - b3c1), | |||
a1(b1c2 - b2c1) - a3(b2c3 - b3c2), | |||
a1(b1c3 - b3c1) - a2(b2c3 - b3c2) |
A × (B × C) + B × (C × A) + C × (A × B) | = B(A ⋅ C) - C(A ⋅ B) + C(B ⋅ A) - A(B ⋅ C) + A(C ⋅ B) - B(C ⋅ A) | ||
= B(A ⋅ C) - B(C ⋅ A) + C(B ⋅ A) - C(A ⋅ B) + A(C ⋅ B) - A(B ⋅ C) | |||
= 0 |
A × (B × C) | = a2(b1c2 - b2c1) - a3(b1c3 - b3c1), | ||
a1(b1c2 - b2c1) - a3(b2c3 - b3c2), | |||
a1(b1c3 - b3c1) - a2(b2c3 - b3c2) | |||
= a2b1c2 - a2b2c1 - a3b1c3 + a3b3c1, | |||
a1b1c2 - a1b2c1 - a3b2c3 + a3b3c2, | |||
a1b1c3 - a1b3c1 - a2b2c3 + a2b3c2 |
(A × B) × C | = (a2b3 - a3b2, a1b3 - a3b1, a1b2 - a2b1) × C | ||
= c2(a1b2 - a2b1) - c3(a1b3 - a3b1), | |||
c1(a1b2 - a2b1) - c3(a2b3 - a3b2), | |||
c1(a1b3 - a3b1) - c2(a2b3 - a3b2) | |||
= a1b2c2 - a2b1c2 - a1b3c3 + a3b1c3, | |||
a1b2c1 - a2b1c1 - a2b3c3 + a3b2c3, | |||
a1b3c1 - a3b1c1 - a2b3c2 + a3b2c2 |
a2b1c2 - a2b2c1 - a3b1c3 + a3b3c1 | = a1b2c2 - a2b1c2 - a1b3c3 + a3b1c3 | ||
a1b1c2 - a1b2c1 - a3b2c3 + a3b3c2 | = a1b2c1 - a2b1c1 - a2b3c3 + a3b2c3, | ||
a1b1c3 - a1b3c1 - a2b2c3 + a2b3c2 | = a1b3c1 - a3b1c1 - a2b3c2 + a3b2c2 |
so that
▿ | = ▿(r-1) | ||
= | |||
= -r-2 | |||
= -r-2 | |||
= -r-2(2x,2y,2z) | |||
= -r-2(x,y,z) | |||
= -r-2r | |||
= -r-2 | |||
= - |
Then for any φt in the group of one-parameter diffeomorphisms generated by this vector field must have
By defining φt(x,y,z) = (x*(t,x,y,z),y*(t,x,y,z),z*(t,x,y,z)), the above equation yields
(x*(t,x,y,z),y*(t,x,y,z),z*(t,x,y,z)) | = V ((x*(t,x,y,z),y*(t,x,y,z),z*(t,x,y,z))) | ||
= (-y*(t,x,y,z),x*(t,x,y,z),1) |
x* | = -y* | ||
y* | = x* | ||
z* | = 1 |
where ft is an arbitrary function on R3 but fixed for each t.
Furthermore,
which has determinant zero. Hence |t=0 detJφt is zero, and thus ▿⋅ V is also zero, indicating the {φt} are volume preserving.
in other words
Therefore
curlV | = | ||
= | |||
= (0,0,0) |