Math 509: Advanced Analysis

Homework 9
Lawrence Tyler Rush
<me@tylerlogic.com>
April 9, 2015
http://coursework.tylerlogic.com/courses/upenn/math509/homework09

1 Problem 16 from Vector Calculus Notes


Let A : R3 R3, B : R3 R3, and f : R3 R and denote
A(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z))

and

B (x,y,z) = (r(x,y,z),s(x,y,z),t(x,y,z))

(a) Derive Rule (1)


(fg) = (fg)x + (fg)y + (fg)z
= fxg + fgx + fyg + fgy + fzg + fgz
= (fx + fy + fz)g + f(gx + gy + gz)
= (f)g + f(g)

(b) Derive Rule (3)


(fA) = (fu,fv,fw)
= (fu)x + (fv)y + (fw)z
= (fxu + fux) + (fyv + fvy) + (fzw + fwz)
= (fxu + fyv + fzw) + (fux + fvy + fwz)
= (fx,fy,fz) A + f(ux + vy + wz)
= (f) A + f(A)

(c) Derive Rule (4)


(A × B) = (vt - ws,wr - ut,us - vr)
= (vt - ws)x + (wr - ut)y(us - vr)z
= vxt + vtx - wxs - wsx + wyr + wry - uyt - uty + uzs + usz - vzr - vrz
= ((wy - vz)r + (uz - wx)s + (vx - uy)t) + (u(sz - ty) + v(tx - rz) + w(ry - sx))
= (wy - vz,uz - wx,vx - uy) B + A (sz - ty,tx - rz,ry - sx)
= (wy - vz,uz - wx,vx - uy) B - A (ty - sz,rz - tx,sx - ry)
= (× A) B - A (× B)

(d) Derive Rule (5)


× (fA) = × (fu,fv,fw)
= ((fw)y - (fv)z,(fu)z - (fw)x,(fv)x - (fu)y)
= (fyw + fwy - fzv - fvz,fzu + fuz - fxw - fwx,fxv + fvx - fyu - fuy)
= (fyw - fzv,fzu - fxw,fxv - fyu) + (fwy - fvz,fuz - fwx,fvx - fuy)
= (fx,fy,fz) × (u,v,w) + f(wy - vz,uz - wx,vx - uy)
= (f) × (u,v,w) + f(× A)

2 Problem 17 from Vector Calculus Notes


3 Problem 18 from Vector Calculus Notes


Let
A = xi +2yj+ 3zk

and

B = 3yi- 2xj

(a) Check Product Rule 2


For the left hand side of rule 2, we have
(A B) = (3xy - 4xy)
= (-xy)
= (-y,-x,0)
and the right hand side we have
A × (× B) + B × (× A) + (A )B + (B )A = A × (0,0,-5) + B × (0,0,0) + (A )B + (B )A
= (-10y,5x,0) + (0,0,0) + (A )B + (B )A
= (-10y,5x,0) + (A )B + (B )A
= (-10y,5x,0) + (                  )
  x ∂-+ 2y ∂-+ 3z ∂-
   ∂x     ∂y     ∂zB
   + (            )
    ∂--    ∂--
  3y∂x - 2y∂yA
= (-10y,5x,0) + (6y,-2x,0) + (3y,-4x,0)
= (-y,-x,0)
which is the same as the left hand side.

(b) Check Product Rule 4


For the left hand side of rule 4, we have
(A × B) = (6xz,9yz,-2x2 - 6y2)
= 6z + 9z + 0
= 3z
and the right hand side we have
(× A) B - A (× B) = (0,0,0) B - A (0,0,-5)
= -A (0,0,-5)
= -15z
which is the same as the left hand side.

(c) Check Product Rule 6


For the left hand side of rule 4, we have
× (A × B) = × (6xz,9yz,-2x2 - 6y2)
= (-21y,10x,0)
and the right hand side we have
(B )A - (A )B + A(B) - B(A) = (            )
  3y ∂-- 2y ∂-
    ∂x     ∂yA -(                  )
 x ∂--+2y ∂-+ 3z-∂-
   ∂x     ∂y    ∂zB
   + A(B) - B(A)
= (3y,-4x,0) - (6y,-2x,0) + A(B) - B(A)
= (-3y,-2x,0) + A(B) - B(A)
= (-3y,-2x,0) + A(0) - B(1 + 2 + 3)
= (-3y,-2x,0) - 6B
= (-3y,-2x,0) - (18y,-12x,0)
= (-21y,10x,0)
which is the same as the left hand side.

4 Problem 19 from Vector Calculus Notes


5 Problem 20 from Vector Calculus Notes


6 Problem 21 from Vector Calculus Notes