and
▿(fg) | = (fg)x + (fg)y + (fg)z | ||
= fxg + fgx + fyg + fgy + fzg + fgz | |||
= (fx + fy + fz)g + f(gx + gy + gz) | |||
= (▿f)g + f(▿g) |
▿⋅ (fA) | = ▿⋅ (fu,fv,fw) | ||
= (fu)x + (fv)y + (fw)z | |||
= (fxu + fux) + (fyv + fvy) + (fzw + fwz) | |||
= (fxu + fyv + fzw) + (fux + fvy + fwz) | |||
= (fx,fy,fz) ⋅ A + f(ux + vy + wz) | |||
= (▿f) ⋅ A + f(▿⋅ A) |
▿⋅ (A × B) | = ▿⋅ (vt - ws,wr - ut,us - vr) | ||
= (vt - ws)x + (wr - ut)y(us - vr)z | |||
= vxt + vtx - wxs - wsx + wyr + wry - uyt - uty + uzs + usz - vzr - vrz | |||
= (wy - vz)r + (uz - wx)s + (vx - uy)t + u(sz - ty) + v(tx - rz) + w(ry - sx) | |||
= (wy - vz,uz - wx,vx - uy) ⋅ B + A ⋅ (sz - ty,tx - rz,ry - sx) | |||
= (wy - vz,uz - wx,vx - uy) ⋅ B - A ⋅ (ty - sz,rz - tx,sx - ry) | |||
= (▿× A) ⋅ B - A ⋅ (▿× B) | |||
▿× (fA) | = ▿× (fu,fv,fw) | ||
= (fw)y - (fv)z,(fu)z - (fw)x,(fv)x - (fu)y | |||
= fyw + fwy - fzv - fvz,fzu + fuz - fxw - fwx,fxv + fvx - fyu - fuy | |||
= fyw - fzv,fzu - fxw,fxv - fyu + fwy - fvz,fuz - fwx,fvx - fuy | |||
= (fx,fy,fz) × (u,v,w) + f(wy - vz,uz - wx,vx - uy) | |||
= (▿f) × (u,v,w) + f(▿× A) |
and
▿(A ⋅ B) | = ▿(3xy - 4xy) | ||
= ▿(-xy) | |||
= (-y,-x,0) |
A × (▿× B) + B × (▿× A) + (A ⋅▿)B + (B ⋅▿)A | = A × (0,0,-5) + B × (0,0,0) + (A ⋅▿)B + (B ⋅▿)A | ||
= (-10y,5x,0) + (0,0,0) + (A ⋅▿)B + (B ⋅▿)A | |||
= (-10y,5x,0) + (A ⋅▿)B + (B ⋅▿)A | |||
= (-10y,5x,0) + B | |||
+ A | |||
= (-10y,5x,0) + (6y,-2x,0) + (3y,-4x,0) | |||
= (-y,-x,0) |
▿⋅ (A × B) | = ▿⋅ (6xz,9yz,-2x2 - 6y2) | ||
= 6z + 9z + 0 | |||
= 3z |
(▿× A) ⋅ B - A ⋅ (▿× B) | = (0,0,0) ⋅ B - A ⋅ (0,0,-5) | ||
= -A ⋅ (0,0,-5) | |||
= -15z |
▿× (A × B) | = ▿× (6xz,9yz,-2x2 - 6y2) | ||
= (-21y,10x,0) |
(B ⋅▿)A - (A ⋅▿)B + A(▿⋅ B) - B(▿⋅ A) | = A -B | ||
+ A(▿⋅ B) - B(▿⋅ A) | |||
= (3y,-4x,0) - (6y,-2x,0) + A(▿⋅ B) - B(▿⋅ A) | |||
= (-3y,-2x,0) + A(▿⋅ B) - B(▿⋅ A) | |||
= (-3y,-2x,0) + A(0) - B(1 + 2 + 3) | |||
= (-3y,-2x,0) - 6B | |||
= (-3y,-2x,0) - (18y,-12x,0) | |||
= (-21y,10x,0) |