![]() | (3.1) |
which gives us a relationship between cartesian and spherical coordinates. Now we also know that

Differentiating each of these equations yields
| dx | = sinθ cosφdr + r cosθ cosφdθ - r sinθ sinφdφ | ||
| dy | = sinθ sinφdr + r cosθ sinφdθ + r sinθ cosφdφ | ||
| dz | = cosθdr - r sinθdθ |
dr + rdθ + r sinθdφ | = (sinθ cosφdr + r cosθ cosφdθ - r sinθ sinφdφ)i+ | ||
| (sinθ sinφdr + r cosθ sinφdθ + r sinθ cosφdφ)j+ | |||
| (cosθdr - r sinθdθ)k |
dr + rdθ + r sinθdφ | = (sinθ cosφi + sinθ sinφj + cosθk)dr | ||
| + (cosθ cosφi + cosθ sinφj - sinθk)rdθ | |||
| + (cosφj - sinφi)r sinθdφ |
| = sinθ cosφi + sinθ sinφj + cosθk | ||
| = cosθ cosφi + cosθ sinφj - sinθk | ||
| = -sinφi + cosφj |